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Acoustic oscillations seen!	



First “compression”,	


at kcstls=π.  Density 
maxm, velocity null.	



First “rarefaction” 
peak at kcstls=2π	



Velocity maximum	



Acoustic scale is set by the sound horizon at last scattering:  s = cstls	





CMB calibration	


•  Not coincidentally the sound horizon is 

extremely well determined by the structure of 
the acoustic peaks in the CMB. 

Dominated by uncertainty in 
ρm from poor constraints near 
3rd peak in CMB spectrum.	


(Planck will nail this!)	



WMAP 5th yr data	





Baryon oscillations in P(k)	



•  Since the baryons contribute ~15% of the total matter density, the 
total gravitational potential is affected by the acoustic oscillations 
with scale set by s. 

•  This leads to small oscillations in the matter power spectrum P(k). 
–  No longer order unity, like in the CMB 
–  Now suppressed by Ωb/Ωm ~ 0.1 

•  Note: all of the matter sees the acoustic oscillations, not just the 
baryons. 



Baryon (acoustic) oscillations	


R

M
S 

flu
ct

ua
tio

n	



Wavenumber	





Divide out the gross trend …	


A damped, almost harmonic sequence of “wiggles” in the power 

spectrum of the mass perturbations of amplitude O(10%). 



Higher order effects	


•  The matter and radiation oscillations are not in phase, 

and the phase shift depends on k. 
•  There is a subtle shift in the oscillations with k due to 

the fact that the universe is expanding and becoming 
more matter dominated. 

•  The finite duration of decoupling and rapid change in 
mfp means the damping of the oscillations on small 
scales is not a simple Gaussian shape. 

•  But regardless, the spectrum is calculable and s can 
be inferred! 

These features are frozen into the mass power spectrum, providing a 
known length scale that can be measured as a function of z.	





Beyond the cartoon	


•  In Newtonian gauge the evolution of the 

baryon and photon perturbations is governed 
by: 
–  Continuity equation(s): 

–  Euler equation(s): 

δ̇γ = − 4
3kVγ −4Φ̇

δ̇b = −kVb −3Φ̇

V̇γ = k
�
1
4δγ + Ψ− 1

6Πγ

�
− τ̇ (Vγ − Vb)

V̇b = −(ȧ/a)Vb + kΨ + τ̇ (Vγ − Vb) /R

�
a→ a[1 + Φ]

�



Fluid equations	


•  These equations can be easily derived by 

stress-energy conservation, but physically: 
–  Densities are enhanced/reduced by converging/

diverging flows and by the stretching of space. 
–  Accelerations are sources by gradients of the 

potential, and comoving velocities decay due to 
the expansion. 

•  Scattering of photons off free electrons 
couples drags Vγ-Vb to zero, leading to a 
baryon-photon fluid. 
–  The protons follow the electrons via 

electromagnetic interactions. 



Acoustic oscillations: photons	


•  Ignore for now the τ  and Π terms. 

•  If Φ~const this becomes: 

δ̇ = − 4
3kV − 4Φ̇

V̇ = k
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1
4δ + Ψ
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+

k2

3
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Effective temperature	





Matter curves space	



•  The fluctuations in the matter/radiation 
generate spatial curvature: 

k2Φ = 4πGa2
�

ρiδi + 3
ȧ

a
(ρi + pi)Vi/k

k2 (Φ + Ψ) = −8πGa2
�

piΠi



Tight coupling I	


•  At early times the density is high and the scattering is rapid 

compared with the “travel time” across a wavelength. 
•  To lowest order Vγ=Vb=V and the continuity equation(s) give: 

d
dη

�
(1 + R)δ̇b

�
= d

dη

�
(1 + R)
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−kV − 3Φ̇

��
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− k d
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�
− kṘV − k(1 + R)V̇

δ̇γ = − 4
3kVγ −4Φ̇

δ̇b = −kVb −3Φ̇



Tight coupling II	


•  Expand the Euler equation in powers of Compton mean-free-

path over wavelength [or k/(dτ/dη)] to lowest order Vγ=Vb=V and 

V̇ + ȧ
aV = kΨ + R−1

�
k(δγ/4 + Ψ)− V̇

�
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�
1
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6Πγ

�
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Tight coupling III	


•  Combing these, and using δb=(3/4)δγ for adiabatic 

fluctuations: 

•  A driven harmonic oscillator with natural frequency 
cs

-2=3(1+R). 
•  During tight-coupling the amplitude of the baryonic 

perturbation cannot grow 
–  Harmonic motion with decaying amplitude [(1+R)-1/4 in adiabatic 

limit. 

•  Baryons decouple when τb~1  (                  ) 

d
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Post-decoupling	


•  Once the photons have released the baryons, both 

the CDM and baryon perturbations grow with δ~a 
(z>>1). 

•  Density and velocity perturbations from tight-coupling 
must be matched onto growing mode solution. 
–  Velocity overshoot. 

•  Note: for the period between horizon entry and 
decoupling all perturbation growth is suppressed.  
Changes shape of P(k) near “peak”. 

•  Oscillations have larger amplitude for higher ωB and 
lower ωm 



Perturbation evolution	



Baryons slow the 
growth of the DM. 
“Stagflation”. 

Oscillations 
at high k are 
damped.	





Diffusion/Silk damping	


•  If we expand to next order in k/[dτ/dη] and assume R, Φ and Ψ 

are slowly varying we get a dispersion relation 

•  which indicates (diffusion) damping of the oscillations with scale: 

–  Note kD~([dτ/dη]/η)1/2: geometric mean of mfp & horizon 

•  The acoustic signal is thus an (almost) harmonic series of peaks 
with a quasi-exponential damping at kD~0.1 h/Mpc. 
–  True effect is more complicated due to rapid changes during 

recombination. 

k−2
D =

1
6

�
dη

1
τ̇

R2 + 16(1 + R)/15
(1 + R)2

Silk (1967),	


Kaiser (1983),	


Hu & White (1997)	
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In configuration space	


•  The configuration space picture offers some important insights,and will 

be useful when we consider non-linearities and bias.  
•  In configuration space we measure not power spectra but correlation 

functions: ξ(r)=∫ P(k)eikrd3k=∫ Δ2(k)j0(kr) dlnk.. 
•  A harmonic sequence would be a δ-function in r, the shift in frequency 

and diffusion damping broaden the feature. 

Acoustic feature at 
~100 Mpc/h with 
width ~10Mpc/h 
(Silk scale)	





Configuration space	



In configuration space one uses a Green’s function method 
to solve the equations, rather than expanding k-mode by k-
mode.   (Bashinsky & Bertschinger 2000) 

To linear order Einstein’s equations look similar to Poisson’s 
equation relating φ and δ,  but upon closer inspection one 
finds that the equations are hyperbolic: they describe 
traveling waves. 

  [effects of local stress-energy conservation, causality, …] 



The acoustic wave	


Start with a single perturbation.  The plasma is totally uniform except 

for an excess of matter at the origin.	


High pressure drives the gas+photon fluid outward at speeds 

approaching the speed of light.	



Baryons	

 Photons	



Eisenstein, Seo & White (2006)	



Mass profile	





The acoustic wave	


Initially both the photons and the baryons move outward together, the 

radius of the shell moving at over half the speed of light.	



Baryons	

 Photons	





The acoustic wave	


This expansion continues for 105 years	





The acoustic wave	


After 105 years the universe has cooled enough the protons capture 
the electrons to form neutral Hydrogen.  This decouples the photons 

from the baryons.  The former quickly stream away, leaving the 
baryon peak stalled.	



Baryons	



Photons	





The acoustic wave	


The photons continue to stream away while the baryons, having lost 

their motive pressure, remain in place.	





The acoustic wave	





The acoustic wave	


The photons have become almost completely uniform, but the baryons 

remain overdense in a shell 100Mpc in radius.	


In addition, the large gravitational potential well which we started with 

starts to draw material back into it.	





The acoustic wave	


As the perturbation grows by ~103 the baryons and DM reach 

equilibrium densities in the ratio Ωb/Ωm.	



 The final configuration is our original peak at the center (which we 
put in by hand) and an “echo”  in a shell roughly 100Mpc in radius.	



Further (non-linear) processing of the density field acts to broaden and very 
slightly shift the peak -- but galaxy formation is a local phenomenon with a 

length scale ~10Mpc, so the action at r=0 and r~100Mpc are essentially 
decoupled.  We will return to this …	





Aside:broad-band shape of P(k)	



•  This picture also allows us a new way of seeing why 
the DM power spectrum has a “peak” at the scale of 
M-R equality. 

•  Initially our DM distribution is a δ-function. 
•  As the baryon-photon shell moves outwards during 

radiation domination, its gravity “drags” the DM, 
causing it to spread. 

•  The spreading stops once the energy in the photon-
baryon shell no longer dominates: after M-R equality. 

•  The spreading of the δ-function ρ(r) is a smoothing, or 
suppression of high-k power. 



Shape of P(k) in pictures	
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Features of baryon oscillations	


•  Firm prediction of models with Ωb>0 
•  Positions well predicted once (physical) matter and 

baryon density known - calibrated by the CMB. 
•  Oscillations are “sharp”, unlike other features of the 

power spectrum. 
•  Internal cross-check: 

–  dA should be the integral of H-1 (z). 
•  Since have d(z) for several z’s can check spatial 

flatness (addition law for distances). 
•  Ties low-z distance measures (e.g. SNe) to absolute 

scale defined by the CMB (in Mpc, not h-1Mpc). 
–  Allows ~1% measurement of h using trigonometry! 



Those pesky details …	


•  I have argued (convincingly?) that we understand 

and can calculate the real space, linear theory, matter 
power spectrum with exquisite accuracy and that it 
contains highly useful features for cosmology. 

•  Unfortunately we don’t measure the linear theory 
matter power spectrum in real space. 

•  We measure: 
–  the non-linear 
–  galaxy power spectrum 
–  in redshift space 

•  How do we handle this? 



Recent BAO “theory”	



1.  Constraints at z~103. 
2.  Understanding the effects of non-linearity, bias & 

redshift space distortions. 
3.  Understanding how to perform “reconstruction”. 
4.  Studying BAO in the IGM. 
5.  Looking at statistical estimators, covariance 

matrices, etc. 

With the basic measurement demonstrated/validated, theoretical 
attention has been divided into five areas 



DE or early universe weirdness?	


•  Key to computing s is our ability to model CMB 

anisotropies. 
•  Want to be sure that we don’t mistake an error in our 

understanding of z~103 for a property of the DE! 
•  What could go wrong in the early universe? 

–  Recombination. 
–  Misestimating cs or ρB/ργ. 
–  Misestimating H(z>>1) (e.g. missing radiation). 
–  Strange thermal history (e.g. decaying ν). 
–  Isocurvature perturbations. 
–  … 

•  It seems that future measurements of CMB 
anisotropies (e.g. with Planck) constrain s well 
enough for this measurement even in the presence of 
odd high-z physics. 

Eisenstein & White (2004); White (2006)	





Effects of non-linearity: mass	


As large-scale structure grows, neighboring objects “pull” 
on the baryon shell around any point.  This causes a 
broadening of the peak and additional non-linear power 
on small scales.  From simulations or PT (of various 
flavors) one finds:	



This does a reasonable job of providing a “template” 
low-z spectrum, and it allows us to understand where 
the information lives in Fourier space [forecasting]. 

Bharadwaj (1996); Eisenstein, Seo & White (2007); Smith, Scoccimarro & Sheth 
(2007); Eisenstein et al. (2007); Matsubara (2007); Padmanabhan, White & Cohn 
(2009); Padmanabhan & White (2009); Seo et al. (2009); Noh et al. (2009); Mehta et al. 
(2010); …	





Non-linearities smear the peak	



Broadening of feature due 
to Gaussian smoothing and 
~0.5% shift due to mode 
coupling. 

Loss of contrast and 
excess power from 
non-linear collapse. 



Information on the acoustic scale	


•  For a Gaussian random field Var[x2]=2Var[x]2, so our power 

spectrum errors are go as the square of the (total) power 
measured. 
–  Measured power is P+1/n 

•  For a simple 1D model 

•  Note that δP/δlns depends only on the wiggles while P+1/n 
depends on the whole spectrum. 

•  The wiggles are (exponentially) damped at high k. 
•  A more complete treatment keeps the angle-dependence due to 

redshift space distortions. 
–  Such Fisher forecasts agree well with the results of numerical simulations. 

(Seo & Eisenstein 2006)	





Lagrangian perturbation theory	


•  A different approach to PT, which has been radically 

developed recently by Matsubara and is very useful 
for BAO. 
–  Buchert89, Moutarde++91, Bouchet++92, Catelan95, Hivon++95. 
–  Matsubara (2008a; PRD, 77, 063530) 
–  Matsubara (2008b; PRD, 78, 083519) 

•  Relates the current (Eulerian) position of a mass 
element, x, to its initial (Lagrangian) position, q, 
through a displacement vector field, Ψ. 
–  Note q is a position, not a wave-vector! 



Lagrangian perturbation theory	


δ(x) =

�
d3q δD(x− q−Ψ)− 1

δ(k) =
�

d3q e−ik·q
�
e−ik·Ψ(q) − 1

�
.

d
2Ψ
dt2

+ 2H
dΨ
dt

= −∇xφ [q + Ψ(q)]

Ψ(n)(k) =
i

n!

� n�

i=1

�
d3ki

(2π)3

�
(2π)3δD

�
�

i

ki − k

�

× L(n)(k1, · · · ,kn,k)δ0(k1) · · · δ0(kn)



Kernels	



L(1)(p1) =
k
k2

(1)

L(2)(p1,p2) =
3
7

k
k2

�
1−

�
p1 · p2

p1p2

�2
�

(2)

L(3)(p1,p2,p3) = · · · (3)

k ≡ p1 + · · · + pn



Standard LPT	


•  If we expand the exponential and keep terms 

consistently in δ0 we regain a series δ=δ(1)+δ(2)+
… where δ(1) is linear theory and e.g. 

•  which regains “SPT”. 
–  The quantity in square brackets is F2. 

δ(2)(k) =
1
2

�
d3k1d3k2

(2π)3
δD(k1 + k2 − k)δ0(k1)δ0(k2)

×
�
k · L(2)(k1,k2,k) + k · L(1)(k1)k · L(1)(k2)
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F2(k1,k2) =
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+
2
7

(k1 · k2)
2

k2
1k

2
2

+
(k1 · k2)

2
�
k−2
1 + k−2

2

�



Power spectrum	



•  If the initial fluctuations are Gaussian 
only expectation values even in δ0 
survive: 
– P(k) ~ <[δ(1)+δ(2)+δ(3)+…][δ(1)+δ(2)+δ(3)+…]> 
–          = P(1,1) + 2P(1,3) + P(2,2) + … 

•  with terms like <δ(1)δ(2)> vanishing 
because they reduce to <δ0δ0δ0>. 



Perturbation theory: diagrams	



δn(k) =
k

qn

q1

δ0(qn)

...

δ0(q2)

δ0(q1)

Fn

q

×

q
′

=
q q

′

≡ (2π)3δD(q+q
′)P0(q),

× = 2
k -k

q

k − q

−q

q − k

= 2

∫
d3q

(2π)3
F2(q, k − q)F2(−q, q − k)P0(q)P0(|k − q|)

Just as there is a 
diagrammatic short-hand for 
perturbation theory in 
quantum field theory, so there 
is in cosmology:  



Example: 2nd order	


P (1,3)(k) =

1
252

k3

4π2
PL(k)

� ∞

0
dr PL(kr)

�
12
r2
− 158 + 100r2 − 42r4

+
3
r2

(r2 − 1)3(7r2 + 2) ln
����
1 + r

1− r

����

�
,

P (2,2)(k) =
1
98

k3

4π2

� ∞

0
dr PL(kr)

� 1

−1
dx PL

�
k
�

1 + r2 − 2rx
�

× (3r + 7x− 10rx2)2

(1 + r2 − 2rx)2
.

Perturbation theory enables the generation of truly impressive 
looking equations which arise from simple angle integrals.	


Like Feynman integrals, they are simple but look erudite!	





LPT power spectrum	


•  Alternatively we can use the expression for δk 

to write 

•  where ΔΨ=Ψ(q)-Ψ(0). 
•  Expanding the exponential and plugging in for 
Ψ(n) gives the usual results. 

•  BUT Matsubara suggested a different and 
very clever approach. 

P (k) =
�

d3q e−i�k·�q
��

e−i�k·∆�Ψ
�
− 1

�



Cumulants	


•  The cumulant expansion theorem allows us to write 

the expectation value of the exponential in terms of 
the exponential of expectation values. 

•  Expand the terms (kΔΨ)N using the binomial theorem. 
•  There are two types of terms: 

–  Those depending on Ψ at same point. 
•  This is independent of position and can be factored out 

of the integral. 

–  Those depending on Ψ at different points. 
•  These can be expanded as in the usual treatment. 



Example	


•  Imagine Ψ is Gaussian with mean zero. 
•  For such a Gaussian: <eX>=exp[σ2/2]. 

P (k) =
�

d3qe−ik·q
��

e−iki∆Ψi(q)
�
− 1

�

�
e−ik·∆Ψ(q)

�
= exp

�
−1

2
kikj �∆Ψi(q)∆Ψj(q)�

�

kikj �∆Ψi(q)∆Ψj(q)� = 2k2
i �Ψ2

i (0)� − 2kikjξij(q)

Keep exponentiated.	

 Expand	





Resummed LPT	


•  The first corrections to the power spectrum are then:  

•  where P(2,2) is as in SPT but part of P(1,3) has been “resummed” 
into the exponential prefactor. 

•  The exponential prefactor is identical to that obtained from 
–  The peak-background split (Eisenstein++07) 
–  Renormalized Perturbation Theory (Crocce++08). 

•  Non-linearities, or mode coupling, erase the acoustic 
signature (Meiksin, White & Peacock 1999). 
–  Fewer k-modes to measure. 
–  Peak is “broadened” making it harder to centroid. 
–  Much of the contribution to Σ comes from low k! 

P (k) = e−(kΣ)2/2
�
PL(k) + P (2,2)(k) + �P (1,3)(k)

�
,



Beyond real-space mass	


•  One of the more impressive features of Matsubara’s approach is 

that it can gracefully handle both biased tracers and redshift 
space distortions. 

•  In redshift space  
•  For bias local in Lagrangian space: 

•  we obtain 

•  which can be massaged with the same tricks as we used for the 
mass. 

•  If we assume halos/galaxies form at peaks of the initial density 
field (“peaks bias”) then explicit expressions for the integrals of 
F exist. 

δobj(x) =
�

d3q F [δL(q)] δD(x− q−Ψ)

P (k) =
�

d3q e−ik·q
��

dλ1

2π

dλ2

2π
F (λ1)F (λ2)

�
ei[λ1δL(q1)+λ2δL(q2)]+ik·∆Ψ
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− 1
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Ψ→ Ψ +
�z · Ψ̇
H

�z



The answer	


P (s)

obj = e−[1+f(f+2)µ2]k2Σ2/2

�
�
b + fµ2

�2
PL +

�

n,m

µ2nfmEnm

�

Zel’dovich	


damping	



Mode coupling terms 
up to E44. These terms 
involve b1 and b2.	



Note angle 
dependence of 
damping.	





Effects of non-linearity on BAO	


•  Non-linear evolution has 3 effects on the 

power spectrum: 
–  It generates “excess” high k power, reducing the 

contrast of the wiggles. 
–  It damps the oscillations. 
–  It generates an out-of-phase component. 

•  In configuration space: 
–  Generates “excess” small-scale power. 
–  Broadens the peak. 
–  Shifts the peak. 



Understanding higher order	


•  We want to fit for the position of the acoustic 

feature while allowing for variations in the 
broadband shape (due e.g. to biasing). 
–  Pfit(k) = B(k) Pw(k,α) + A(k) 
–  B(k) and A(k) are smooth functions. 

•  Can take B(k)=const and A(k) as a spline, polynomial, Pade, ... 

‒  α measures shift relative to “fiducial” cosmology. 
–  Pw(k,α) is a template. 

•  Numerous arguments suggest Pw(k,α)=exp[-k2Σ2/2]PL(k/α). 
•  Take Σ to be a free parameter, perhaps with a prior. 

•  How does this do? 
Argument from 
Padmanabhan & White (2009)	





Measuring shifts in cCDM	


•  Any “shift” in the acoustic scale is small in 
ΛCDM, and therefore hard to study. 

•  Work with a “crazy” cosmology 
‒  Ωm=1, ΩB=0.4, h=0.5, n=1, σ8=1. 
–  Sound horizon 50h-1Mpc, not 100h-1Mpc. 

•  The fitted shifts are (α-1 in percent): 
z	

 DM	

 xδL	

 w/P22	



0.0	

 2.91 ± 0.20	

 -0.2 ±0.1	

 -0.03 ± 0.16	


0.3	

 1.88 ± 0.12	

 -0.2 ±0.1	

 -0.38 ± 0.09	


0.7	

 1.17 ± 0.07	

 -0.1 ±0.1	

 -0.12 ± 0.05	


1.0	

 0.88 ± 0.06	

 -0.1 ±0.1	

 -0.04 ± 0.04	





Shifts vs time	



Amplitude of the shift 
vs. time (redshift) for 
the mass.	



Shifts are consistent 
with D2 scaling 
(dotted) suggesting an 
origin from 2nd order 
terms …	





Where do the shifts come from?	



z	

 DM	

 xδL	

 w/P22	



0.0	

 2.91 ± 0.20	

 -0.2 ±0.1	

 -0.03 ± 0.16	


0.3	

 1.88 ± 0.12	

 -0.2 ±0.1	

 -0.38 ± 0.09	


0.7	

 1.17 ± 0.07	

 -0.1 ±0.1	

 -0.12 ± 0.05	


1.0	

 0.88 ± 0.06	

 -0.1 ±0.1	

 -0.04 ± 0.04	



Recall in PT we can write δ=δ(1)+δ(2)+… or	


P = {P11 + P13 + P15 + …} + {P22 + … } = P1n + Pmn.	


We can isolate these two types of terms by considering the 
cross-spectrum of the final with the initial field, which 
doesn’t contain Pmn.	



Shifts in the cross-spectrum are an order of magnitude 
smaller than shifts in the auto-spectrum!	



P1n(k) ∼ PL(k)
� �

k

�
d3qkPL(qk)

�
Fn(· · · )

Broad kernel 
suppresses 
oscillations.	





Mode-coupling	


•  By contrast the Pmn terms involve integrals of 

products of PLs times peaked kernels. 
•  Example: P22 ~ ∫ PLPL F2 and F2 is sharply peaked 

around k1≈k2≈k/2.  
•  Thus the ∫ PLPL term contains an out-of-phase 

oscillation 
–  PL~ … + sin(kr):  PLPLF2 ~ sin2(kr/2) ~ 1+cos(kr) 

•  Since cos(x)~d/dx sin(x) this gives a “shift” in the 
peak 
–  P(k/α) ~ P(k) - (α-1) dP/dlnk + … 



Mode-coupling approximates derivative	



Up to an overall 
factor the mode-
coupling term, P22, is 
well approximated by 
dPL/dlnk.	





Modified template	


•  This discussion suggests a modified 

template, which has just as many free 
parameters as our old template: 

•  This removes most of the shift. 

Pw(k,α) = exp
�
−k2Σ2

2

�
PL(k/α)

+ exp
�
−k2Σ2

1

2

�
P22(k/α) .

z	

 DM	

 xδL	

 w/P22	



0.0	

 2.91 ± 0.20	

 -0.2 ±0.1	

 -0.03 ± 0.16	


0.3	

 1.88 ± 0.12	

 -0.2 ±0.1	

 -0.38 ± 0.09	


0.7	

 1.17 ± 0.07	

 -0.1 ±0.1	

 -0.12 ± 0.05	


1.0	

 0.88 ± 0.06	

 -0.1 ±0.1	

 -0.04 ± 0.04	





Biased tracers?	


•  In order to remove the shift we needed to 

know the relative amplitude of P11 and P22. 
•  What do we do for biased tracers? 

–  Eulerian bias 

–  Lagrangian bias 
Ph =

�
bE
1

�2
(P11 + P22) + bE

1 bE
2

�
3
7
Q8 + Q9

�
+

(bE
2 )2

2
Q13 + · · ·

Ph = exp
�
−k2Σ2

2
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�
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7
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2
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7
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�

+
�
bL
1
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2
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2

�2
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Mode-coupling integrals	


Qn(k) =

k3

4π2

� ∞

0
dr PL(kr)

� 1

−1
dxPL(k

�
1 + r2 − 2rx) �Qn(r, x)

�Q1 = r2(1−x2)2

y2 , �Q2 = (1−x2)rx(1−rx)
y2 ,

�Q3 = x2(1−rx)2

y2 , �Q4 = 1−x2

y2 ,

�Q5 = rx(1−x2)
y , �Q6 = (1−3rx)(1−x2)

y ,

�Q7 = x2(1−rx)
y , �Q8 = r2(1−x2)

y ,
�Q9 = rx(1−rx)

y , �Q10 = 1− x2,
�Q11 = x2, �Q12 = rx, �Q13 = r2

(Matsubara 2008)	





Out-of-phase?	



The numerous combinations that come in are also well 
approximated by the (log-)derivative of P11!  All of these terms can 

be effectively written as:	



Ph = exp
�
−k2Σ2

2

�
[B1PL + B2P22] .



Models do lie on a narrow line	



Pw(k,α) = b1

�
exp

�
−k2Σ2

2

�
PL(k/α) + exp

�
−k2Σ2

1

2

�
B2

B1
P22(k/α)

�



Implications for ΛCDM?	


•  Shifts caused by P22, well approximated by dPL/dlnk. 

–  True also for ΛCDM, same scaling coeff. 

•  Additional shifts for biased tracers approximate dPL/
dlnk. 
–  True also for ΛCDM, same scaling coeff. 

•  Simple model explains B1-B2 relation. 
–  True also for ΛCDM. 
–  Can also be measured from simulations. 

•  For ΛCDM the shifts are an order of magnitude 
smaller than for cCDM. 
‒  α-1~0.5% x D2 x B2/B1 



Shifts for galaxies	


Shifts at z=0 for	



Halos of mass M	


Halos above M	


N~[1+M/M1]	



At higher z the shift 
decreases as D2.	



Recall, the final error in 
BAO scale is the 
uncertainty in this 
correction, not the size 
of the correction itself!	





Redshift space	



•  In resummed LPT we can also consider the 
redshift space power spectrum for biased 
tracers. 

•  For the isotropic P(k) find a similar story 
though now the scaling coefficients depend 
on f~dlnD/dlna. 
–  Expressions become more complex, but the 

structure is unchanged. 
•  The amplitude of the shift increases slightly. 



Perturbation theory & BAO	


•  Meiksin, White & Peacock, 1999 

–  Baryonic signatures in large-scale structure 

•  Crocce & Scoccimarro, 2007 
–  Nonlinear Evolution of Baryon Acoustic Oscillations 

•  Nishimichi et al., 2007 
–  Characteristic scales of BAO from perturbation theory 

•  Matsubara, 2008ab 
•  Jeong & Komatsu, 2007, 2008 

–  Perturbation theory reloaded I & II 

•  Pietroni, 2008 
–  Flowing with time 

•  Padmanabhan et al., 2009; Noh et al. 2009 
–  Reconstructing baryon oscillations: A Lagrangian theory perspective 
–  Reconstructing baryon oscillations. 

•  Taruya et al., 2009 
–  Non-linear Evolution of Baryon Acoustic Oscillations from 

Improved Perturbation Theory in Real and Redshift Spaces 



•  The hardest issue is galaxy bias. 
–  Galaxies don’t faithfully trace the mass 

•  ... but galaxy formation “scale” is << 100Mpc so effects are 
“smooth”. 
–  In P(k) effect of bias can be approximated as a smooth 

multiplicative function and a smooth additive function. 
•  Work is on-going to investigate these effects: 

–  Seo & Eisenstein (2005) 
–  White (2005) 
–  Schulz & White (2006) 
–  Eisenstein, Seo & White (2007) 
–  Percival et al. (2007) 
–  Huff et al. (2007) 
–  Angulo et al. (2007) 
–  Smith et al. (2007) 
–  Padmanabhan et al. (2008, 2009) 
–  Seo et al. (2008) 
–  Matsubara (2008) 
–  Noh et al. (2009) 

Galaxy bias	



Δ2
g(k)=B2(k) Δ2(k) + C(k)	



Rational functions or 
polynomials or splines.	





Reconstruction	


•  The broadening of the peak comes from the “tugging” of large-

scale structure on the baryon “shell”. 
•  We measure the large-scale structure and hence the gravity that 

“tugged”. 
•  Half of the displacement in the shell comes from “tugs” on 

scales ~100 Mpc/h 
•  Use the observations to “undo” non-linearity (Eisenstein++07) 

–  Measure δ(x), infer φ(x), hence displacement. 
–  Move the galaxies back to their original positions. 

•  Putting information from the phases back into P(k). 
•  There were many ideas about this for measuring velocities in 

the 80’s and 90’s; but not much of it has been revisited for 
reconstruction (yet). Eisenstein++07; Huff++07; Seo et al.++08,09; 

Wagner++08; Padmanabhan++09; Mehta++09; 
Noh++09; …	





Contributions to the displacement	





Reconstruction	


Reconstruction 
helps to sharpen 
the peak in the 
correlation function 
which is smeared 
by non-linear 
evolution. 

This seems relatively “easy”, BUT, to date reconstruction hasn’t 
been demonstrated on non-simulated data.	





Lensing	


Hui, Gaztanaga & LoVerde: effects of lensing on the correlation function. 

For next-generation experiments effect is small. 
Eventually may be measurable: template known. 

Fr
ac

tio
na

l p
ea

k 
sh

ift
	





BAO and the IGM	


•  Distance constraints become tighter as one moves to 

higher z 
–  More volume per sky area. 
–  Less non-linearity. 

•  Expensive if use galaxies as tracers. 
•  Any tracer will do: HI 

–  21cm from HI in galaxies: SKA or custom expt. 
–  Lyα from IGM as probed by QSOs. 

•  If IGM is in photo-ionization equilibrium 
–  Absorption traces mass in a calculable way. 
–  Flux(λ) ~ exp[ -A(1+δ)β ]  (Cen++94, Hui & Gnedin 97, Croft++98) 

•  A dense grid of QSO sightlines could probe BAO 
–  (White 2003, McDonald & Eisenstein 2007, Slosar++09, White++10) 



Spectrum ‘=’ density	


QSO 1422+23	





Orientation: distances & redshifts	



z	

 λα	

 Δχ	

 dλ/dχ	

 dv/dχ	



2.0	

 3657	

 575	

 1.11	

 91	



2.5	

 4255	

 546	

 1.37	

 97	



3.0	

 4863	

 518	

 1.66	

 102	





FGPA	


•  Physics of the forest is straightforward. 

–  Gas making up the IGM is in photo-ionization (but not 
thermal) equilibrium with a (uniform?) ionization field which 
results in a tight ρ-T relation for the absorbing material 

•  T = T0 (ρ/ρ0)γ-1 

•  Expect γ ~ 1 at reionization to ~1.5 at late time and T0~2. 
104K 

–  The HI density is proportional to a power of the baryon 
density. 

•  For z<5, xe ~1 so ne~np~nb thus nHI ~ α(T) nb
2/Γ∼ nb

p 



FGPA	


•  Physics of the forest is straightforward. 

–  Since pressure forces are sub-dominant on “large” scales, 
the gas traces the dark matter (0.1-10 Mpc/h).   

–  The structure in the QSO spectrum thus traces, in a 
calculable way, the fluctuations in the matter density along 
the line-of-sight to the QSO.  The Ly-α forest arises from 
overdensities ~ 1. 

–  Observed flux is e-τ (times quasar continuum, plus noise, 
etc.) 

–  The pre-factor is in principle calculable (depends e.g. on Γ) 
but is usually fixed by an external data point, typically <F>, 
or fit to the data.  



On large scales	


•  Now on large-scales we have that the flux is 

some (complicated) function of the density. 
–  Flux traces mass, with a bias. 

•  Expect to see a BAO signal in the flux. 
•  Differences with the galaxies 

–  Projection/finite sampling. 
–  Signal is e-τ, so downweights high-δ. 
–  Need to be slightly careful about redshift space 

distortions (τ conserved, not n). 



BAO at high z	


Signal in “theory”	
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BAO feature survives in the LyA flux correlation 
function, because on large scales flux traces density.  

Relatively insensitive to astrophysical effects. 

Signal in “simulations”	





Small-scales: Roadrunner	


Previous simulations were fine for BAO-scale, but lacked resolution to give a 
reasonable small-scale model: pipeline tests, error bars, … 

With Roadrunner we simultaneously 
resolve large (100Mpc) and small 
(100kpc) scales in a single simulation! 

White, Pope, Carlson, Heitmann, Habib, 
Fasel, Daniel & Lukic (2010)	





Lower dimensional fields	


•  Imagine δ(x) is a 3D stochastic field. 
•  Let W(x) be a window function we multiply the field by 

in configuration space 
‒  δW(x) = δ(x)W(x). 

•  In Fourier space 
‒  δW(k) = [δ*W](k). 
–  PW(k)=[P*W2](k). 

•  For a 1D field along z: W(x)=δD(x)δD(y)1(z) 
–  W(k)=1(kx)1(ky)δD(kz) 

∆2
1D(k) =

kP (k)
π

= k

� ∞

k

d3k�

(2π)3
P (k�)

k�
Power at k1D comes 
from k3D≥k1D. 



Aliasing	



Can’t tell the difference between a constant 
field (kx=ky=kz=0) and one varying transverse to 

the line-of-sight (kx>0 or ky>0) 

∆2
1D(k) =

kP (k)
π

= k

� ∞

k

d3k�

(2π)3
P (k�)

k�



Skewer density	





Skewer density	


•  Looking along a finite number of sightlines leads to 

power aliasing. 
•  As the number of sightlines increases this aliasing is 

tamed – eventually reach sample variance. 
•  Variance arising from aliasing equals sample 

variance at a critical 2D number density of sightlines: 

•  corresponding to about 50 quasars/sq. deg. 
–  Number for QSOs at a fixed z. 

White et al. (2010: The “Roadrunner” simulations)	





New surveys, new statistics	


•  Estimating the 2-point function from survey data is an old problem. 

–  Most techniques we use today were developed decades ago when 
surveys were in a very different regime. 

•  Landy-Szalay: optimal for small Ngal in the no-clustering regime. 

•  New modes of operation. 
–  Surveys are much larger, boundaries often less important, but 
–  Signals are smaller and 
–  Careful attention to errors is critical for proper statistical inference. 
–  Frequently (always?) compare observations to simulations. 

•  Does the statistic “play well” with periodic simulation boxes? 

•  Higher order statistics? 
–  N-point functions. 

•  On large scales structure is pretty Gaussian.  Necessary? 
•  Reconstruction?? 

–  Marked correlation functions with e.g. mark ρ. 



Ongoing work	


•  Templates for fitting data, able to account for non-

linearity, redshift space distortions and galaxy bias. 
•  New estimators optimized for large-scale signals 

calibrated by numerical simulations. 
•  Models for the covariance matrices, calibrated by 

simulations. 
•  More sophisticated reconstruction algorithms. 
•  Some “new” ideas, and experimental approaches … 



Conclusions	


•  Baryon oscillations are a firm prediction of CDM models. 
•  Method is “simple” geometry, with few systematics. 
•  The acoustic signature has been detected in the SDSS! 
•  With enough samples of the density field, we can measure dA(z) 

and H-1(z) to the percent level and thus constrain DE. 
–  Was Einstein right? 

•  Require “only” a large redshift survey - we have >20 years of 
experience with redshift surveys. 

•  Exciting possibility of doing high z portion with QSO absorption 
lines, rather than galaxies. 

•  It may be possible to “undo” non-linearity. 



The End	




