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Overview	


•  Cosmic shear is the distortion of the shapes of 

background galaxies due to the bending of light by 
the potentials associated with large-scale structure.	



•  For sources at zs~1 and structure at 0.1<z<1 it is a 
percent level effect which can only be detected 
statistically.	



•  Observationally tractable.	


•  Contains “interesting” information.	


•  Theoretically clean.	





Why Bother?	


•  Probes large-scale structure	



– Watch structure grow as a function of epoch	


– Observe the formation of objects such as clusters	



•  Provide estimates of cosmological parameters	


– Measure the mass density (Ωm)	


– Measure the amplitude of clustering (δH, As, σ8)	


– Study Dark Energy (including growth rate!!)	



•  It is an interesting theoretical problem!	





Background	


Light from distant sources is deflected by the potentials 
associated with large-scale structure.  Recalling that light 
deflection goes as the gradient of the potential we can derive the 
mapping:	



Unfortunately we do not know a priori the positions of the 
galaxies that we observe, so we need to look at distortions in 
the shape of galaxies, i.e. the Jacobian of this mapping.	



χ	


χ-χ’	

χ'	





Background (contd)	


Thus the “distortion matrix”, which describes the how a ray	


bundle is modified by its transit through the universe is	



where A can be written as the gradient of the mapping or	



with	



where p(χs) is the source distribution.	





Background (contd)	


The distortion matrix A is conventionally decomposed as	



γ1>0	

 γ1<0	

 γ2>0	

 γ2<0	



where κ<<1 is the convergence and γ<<1 is the shear.	


The rotation, ω, only comes from higher order effects and is 
much smaller than κ or γ.	



This maps a circular source to an ellipse:	





The integral defining A should be taken along the perturbed 
photon path, but the deflection is typically small, so to 1st order 
we can integrate along a straight line (Born approximation).	



Then A is the second derivative of a projected potential:	



Note κ and γ come from a single potential, φ. 	



The “Born” approximation	



If we relate the potential to the density by Poisson’s equation,	


integrate by parts and ignore the surface term	



In the Born limit, the convergence is (almost) the projected mass.	





A simulated shear field	



2 degrees	



Obvious non-linear 
structure, with shear 
tangential about κ peaks of 
typical size ~1 arcmin.	



Filamentary structure erased 
by projection.	



Shear field sampled 
(regularly) at about the level 
achievable observationally 
from deep space based data.	





Measuring Shear	


The mapping (1+A) changes the shapes of galaxy images.	


Thus each galaxy provides a (noisy) measure of the shear at its 
position:  	



Under the assumption that galaxies are randomly oriented	


but coherently sheared in some region of the sky, we can	


simply average the measures of ellipticity to obtain the	


shear with an error that scales as erms/N1/2 for N galaxies.	



constant	





Shot noise	


For 10% intrinsic ellipticities and 1% shears we need to average 
over 100 galaxies to get an estimate of the shear at any position 
on the sky with S/N~1.	


Example: simulated convergence maps with appropriate noise	



Input	



3o	



50 gal/arcmin2	

 200 gal/arcmin2	





Lensing power spectrum	


Within the Born and Limber approximations the shear and 
convergence power spectra are given by	



The lensing power spectrum is 
sensitive to the distance factors, 
the matter density and the growth 
of large-scale structure.	



Over most of the measurable 
range it is dominated by non-
linear gravitational clustering.	





Measuring the power spectrum	


For a Gaussian field measured over fsky of the sky with a finite 
number of galaxies the error is:	



fsky = 10%	



fsky = 100%	



(Δl=0.1l)	



ngal=100, 50, 25/arcmin2	



fsky = 1%	





Tomography: (2+ε)D surveys	


•  Tomography refers to the 

use of information from 
multiple source redshifts.	



•  This adds some “depth” 
information to lensing -- 
important for evolution 
studies 	

(Hu 1999).	



Takada et al.	





Tomography (contd)	



If we divide the sources 
into bins labelled by a, b 
then we promote Cl to Cl
(ab), etc.	



Since g(χ) is so broad, 
different source bins are 
very correlated (r>0.9).	


Gains saturate quickly!	



The generalization is straightforward for any statistic.	



z1	

 z2	





Observations	


First detections of cosmic shear in Spring 2000	



Mass map from 2.1 deg2 survey with Subaru 

M
iyazaki et al. 2002	





Observational status through 2003	


Typically tens of galaxies per square arcminute	





Recent surveys	


New results continue to be published by different groups, mostly 
on the 2-point function and mostly using single source redshift 

distributions (with some exceptions).	





Agreement isn’t bad, but …	



Refregier (ARAA, 2003)	



Need the equivalent 
of 1% precision in σ8 
to be able to measure 
dark energy w.	



Rhodes et al (2003)	


Massey et al. (2004)	



Heymans et al. (2004)	


Jarvis et al. (2005)	



Hoekstra et al. (2005)	





The 2-point function: state of the art	



We are beginning to measure the power spectrum.  B-modes gone!	



Hoekstra et al. (2005)	


Signal	



Systematics	





The skewness	


By measuring the 2- and 3-point functions of the shear, the 
VIRMOS-DESCARTES group (Pen et al. 2003) were able to 
compute S3=<κ3>/<κ2>2 over a range of scales.	



The errors include an 
allowance for the non-
zero B-mode they found 
during this earlier 
analysis.	


Re-analysis in progress.	





Structure grows!?	



Evolution of power, Δ2

(14/Mpc), from the 
COMBO-17 survey.	



(Bacon et al. 2004)	



ΛCDM with σ8=0.7	





Tomography demonstrated!	


Semboloni et al. (2005)	



High-z sample	



Low-z sample	





Future projects	


The 2nd generation of surveys will use “good” telescopes and 
tested observational techniques: expect dramatic improvement.	





Computing weak lensing	



Theory or simulation?	



All lensing “theory” is simulation based … whether it uses 
fits to halo profiles, halo mass functions and N-body power 

spectra (semi-“analytic’’) or direct simulation.	





Types and uses of simulations	



•  Halo abundances and shapes	


•  Mass power spectra (and covariance matrices)	


•  Projected mass maps	


•  Ray tracing maps	


•  Mock galaxy catalogues	



We need numerical simulations to refine and calibrate algorithms	


and analytic approximations, and potentially serve as templates	



when the data become available.	



Simulations can be used to extract:	



Lensing lends itself to numerical simulation …	



We have implemented all of these approaches…	





Ray tracing: the MLP algorithm	



•  The gold standard of simulation algorithms is the “multiple 
lens plane” algorithm, where we trace ray bundles through 
the evolving mass distribution in an N-body simulation.	



•  The lensing equations are discretized and the integrals 
turned into sums:	





Tests of the MLP	



•  The effect of border discontinuities	


•  The “ray-plane perpendicular” approximation 	


•  The first fully 3-d ray tracing protocol 	


•  Time evolution effects 	


•  Number of lens planes necessary	


•  Numerical resolution issues	


•  Test common analytic approximations	



Bottom line: MLP is good to at least a few percent in the power 
spectrum;  the limiting computational cost is the generation of 
N-body simulations.	



With Chris Vale we have made extensive tests of the MLPA and 
its convergence properties:	



Vale & White (2003)	





Understanding Our Simulations	



(Vale & White 2003)	





Ωm = 0.357   ω = -0.8   h = 0.64   n = 1.00   σ8 = 0.88   τ = 0.15	



32 convergence maps, 3o on a side	


http://mwhite.berkeley.edu/Lensing/	



(with Chris Vale)	





Theory & Analysis	



•  These maps are very useful for investigating higher 
order functions and higher order effects.	



•  The maps make good tests of algorithms.	


•  The maps can be used to model systematic errors 

and their removal or estimate error bars from sample 
variance.	



•  Available	


–  Convergence and shear maps [different p(zs)]	


–  Halo catalogs	


–  Sheared “galaxy” catalogs	


–  Power spectra, …	





Example: systematics	



E-mode	



B-mode	



(Vale, Hoekstra, van Waerbeke & White 2004)	



ΔE-mode	





Non-Gaussianity & Sample variance	



The distribution of 
variances is not 
well approximated 
by a Gaussian on 
small scales.  
Sample variance is 
a larger effect than 
a naïve calculation 
would indicate.	





Reduced shear	


•  Unless we have a measurement of the intrinsic 

size or magnification of a galaxy we cannot 
measure γ but only g=γ/(1-κ)	



•  Since γ and κ are usually small this difference is 
often neglected (except around clusters).	



•  Can be a few percent effect on arcminute scales!	





Reducing shear enhances shear	


•  On small scales κ can be quite large, and spatial 

smoothing does not commute with the “reducing” 
operation.	



•  Generally g has larger fluctuations than γ because 
κ is skew positive.	


–  Excess small-scale power compared to naïve 

predictions.	


•  The effect is different for different estimators	



–  A signal of “reduced shear” vs. e.g. intrinsic alignments 
or systematics.	



•  The effect is non-linear	


–  Provides cross-check on shear calibration	





Reduced shear	


We don’t measure the shear, γ, but the reduced shear g=γ/(1-κ)	





A semi-analytic model	



Dodelson, Shapiro & White (2005)	





CFHT-LS 

Bias in parameters	





Correlations in clustering	



Find that the 2-
point and 3-point 
functions are 
highly correlated 
on small scales.	



This is not too 
surprising when 
thought of from an 
“object” 
perspective but is 
not often assumed.	





Correlations contd.	


•  Correlation matrix 

for 2nd and 3rd order 
Map statistics 
(computed from κ 
maps).	



•  Uses Mexican hat 
filter with scales 1, 
2, 4, 8 & 16 arcmin 
(40 measures: 5x 2-
pt and 35x 3-pt).	





Beyond gravity	


•  Non-gravitational physics becomes important on 

small scales, becoming dominant beyond l~3000.	


–  White (2005), Zhan & Knox (2005)	



•  Dramatic progress in modeling extra physics!	


–  Expect small # of simulations including relevant 

physics will be available within 5-10 years.	


–  Can mock up some of the physics in gravity-only 

simulations	


•  Put gas in hydrostatic equilibrium with known DM potential.	


•  Apply adiabatic contraction to halos where gas would have 

cooled.	



•  Use photo-z to apply “nulling tomography”.	


–  Huterer & White (2005) 	





Beyond the 2-point function	



Non-gaussianity as blessing or curse?	





Finding clusters with weak lensing	


•  Lensing maps are obviously non-Gaussian.	



–  You can point to structures in the maps	



•  Higher order functions or peak statistics contain additional 
information beyond the 2-pnt function.	



•  The obvious extension of non-Gaussian thinking is to look 
at the extrema of the maps	


–  Finding clusters.	



•  Unfortunately lensing measures the projected mass along 
the line of sight.	



•  Projection effects can be severe and need to be modeled.	





Projection effects lead to scatter 
in the shear-mass relation	



Scatter in the shear-mass relation means lensing does not 
produce a mass selected sample, but a shear selected sample!	



This has implications for doing cosmology.	



10
0M

pc
/h
	



Metzler, White & Loken	





Projection effects can be severe	


Hennawi & Spergel have used a tomographic matched filter 
algorithm to find clusters and determine their redshifts.  The 
tomographic information helps reduce projection effects, but 

cannot eliminate them entirely.	



Assuming 60% efficiency 
(3.5σ) and searching for 
clusters in the range 
0.2<z<0.8	



No tomography	


Tomography	


Truth	





Tomographic (MF) redshifts	


(Hennawi and Spergel 2004)	



No halo above	


1013.5Msun!	





What does lensing add?	


•  While lensing offers an advantage in being independent of 

the dynamical state of the cluster or the luminosity of the 
material, it suffers a huge disadvantage due to projection.	


–  In principle lensing can be accurately modeled, and 

measurements compared to predictions.	


•  Lensing may not be an efficient way to find clusters.	



–  But perhaps it doesn’t need to be!	


•  Clusters can probably be found by other means, e.g. as 

galaxy overdensities in deep optical images.	



What does lensing add to the	


3D galaxy distribution?	





A calibration sample	


•  It has been emphasized (Majumdar & Mohr) that even a small 

sample of clusters where the observable-M relation has been 
calibrated would dramatically improve cluster counting 
constraints on cosmological parameters (e.g. DE).	



•  Can lensing be used to calibrate the O-M relation?	


•  Suppose I had a cluster catalog with a richness estimate for 

each halo and a weak lensing map of the same region.	


–  Can I use the galaxy data to remove the line-of-sight projection on a 

halo-by-halo basis? 	


–  If not, can I rely on simulations to calibrate the shear-mass relation 

(bias and scatter)?	





Halos and lensing	


M > 2 1013	

 M > 1014	
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All mass	





Modeling the line-of-sight	


Around efficient lensing halos with M > 3x1014 h-1Msun	



subtract the effect of halos with M > Mcut	



de Putter & White (2005)	





Mass function too steep	



•  Convergence is very slow, because of the 
nature of the halo mass function.	



•  It appears that (unless one can go to 
extremely low mass halos) halo-by-halo 
mass estimation won’t work.	



•  We need to use a statistical method, where 
we calibrate an observable-M relation using 
a large sample of clusters.	





Scatter in mass estimator	



Correction for line-of-
sight contamination by 
fitting a projected 
NFW profile to κ and 
computing M200 from 
the fit.  

Bias is a few percent. 

Scatter is ~25%. 



Distribution of errors	





Calibration vs testing	


•  Used simulations to test line-of-sight correction procedure. 	


•  Can  I rely on simulations to calibrate the shear-mass 

relation (bias and scatter)?	


–  Should be tractable in principle, but never demonstrated 

in even approximately realistic conditions.	


–  If I can trust the simulations “perfectly”, what do I gain 

by using peaks rather than the whole map?	


–  Is this easier than calibrating the richness-mass relation 

given advances in theoretical understanding of galaxies 
(halo models)?	





Lensing of the CMB	


Of course galaxies aren’t the only source of (lensed) light in the 
universe.  Any screen will do.  The CMB is the furthest screen!	



Large-scale structure will lens the CMB anisotropy.	



Since we don’t know the “shape” of the CMB a priori we need 
to use more statistical information.	



Seljak (1996)	

 Hu & Okamoto (2002)	



Zaldarriaga & Seljak (1999)	

 Okamoto & Hu (2002, 2003)	



Zaldarriaga (2000)	

 Cooray & Kesden (2003)	



Seljak & Zaldarriaga (2000)	

 Hirata & Seljak (2003)	


Hu (2001)	

 Amblard, Vale & MW (2004)	





Lensing of the CMB (contd)	


Consider the CMB, lensed	



The correlation function will depend on Φ, allowing us to make a 
quadratic estimator assuming everything is Gaussian and the 
deflection angle is small.	



(Hu; Hirata & Seljak)	



We should be able to detect this effect with upcoming 
experiments (e.g. APEX-SZ, SPT, ACT)!	



But how well do these estimators work, and how sensitive are 
they to observational strategy, foregrounds and systematics?	





Lensing of CMB by LSS	


•  Worry about violations of assumptions:	



–  Potential field is non-Gaussian.	


–  Deflection angle is not infinitesimal.	



•  Since estimator is looking for small amounts of 
(lensing induced) non-Gaussianity on top of the 
Gaussian CMB, worry about the effect of 
foregrounds,	


–  IR sources	


–  kSZ and	


–  O-V at hi-z	


–  etc..	





Numerical study	



•  Simulations include	


–  Primary CMB map	


–  Gaussian and non-Gaussian lensing fields	


–  Idealized detector noise	


–  Kinetic SZ signal (optional)	



•  Primary configuration	


–  30x30 degrees	


–  0.8’ FWHM resolution	


–  2µK/arcmin (white) noise or more	



•  Make lensed maps, apply quadratic estimator, 
apply corrections  …	



Want to simulate some of these issues and investigate whether 
APEX-SZ, SPT and ACT could see lensing.	





Assessing the results	



•  Cross-spectrum	


–  Not measurable	


–  Looks for bias in the method or a mis-estimated 

normalization for κ	


•  Auto-spectrum	



–  Measurable	


–  Can be both multiplicatively and additively biased due 

to misestimates of the noise terms.	



It is non-trivial to assess the numerical results.  We use visual 
inspection and two power spectra as our metrics:	





Biases	


•  Even in the absence of foregrounds we 

find that the quadratic estimator is both 
multiplicatively and additively biased.	



•  The bias depends on the level of signal.	


•  The additive bias comes from	



–  Higher order terms in the noise	


–  Non-Gaussianity in the lensing field.	



•  The multiplicative bias is due to non-
linearity	

 Assumption	

 Cl Error	



Quad Est	

 70%	


2nd order	

 25%	



NG	

 20-30%	


Quoted errors 
are O(1%)!	





Additive bias for Gaussian maps	



Truth (1 realization)	



1st order	



+2nd order	



Cross-spectrum	



No noise subtracted	





Adding non-Gaussianity	



Auto-spectrum 
& 2nd order 
noise terms.	



Cross 
spectrum.	



Now have non-vanishing 3-point function, etc., so Gaussian 
estimate for normalization is insufficient.	





Effects of resolution	



S/N	



Bias (optimal++)	



Higher resolution brings 
more signal, but 
additional theory 
uncertainty:	


•  LSS is non-Gaussian	



•  Deflection angle not small	



Working at higher 
resolution increases 
the S/N.	



Similar effects for polarization	


(Amblard, in prep)	





Adding foregrounds: kSZ	



kSZ contamination	



Input κ map	

 Recovered	

 Smoothed kSZ map	



Maps have been smoothed from 0.8’ to 20’ to enhance the S/N.	





kSZ and power spectrum	



kSZ ‘bias’ reduces to 
x2 if tSZ bright 
clusters are masked.	
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Upcoming experiments	



Input	

 APEX	



SPT	

 Planck	





Power spectra	


Best 
reconstruction: 
higher order 
terms and kSZ 
masked.	



Remaining bias 
would need to be 
corrected by 
simulations.	



Planck/10	

 APEX	

 SPT	





Conclusions	


•  Cosmic shear has come of age!	



•  We can accurately simulate lensing fields on 
scales of arcminutes to degrees.	



•  Non-Gaussianity offers rich opportunities and 
difficult challenges.	



•  We may soon detect gravitational lensing of the 
cosmic microwave background.	





The End	




