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Limited options	

•  Beyond a certain scale, linear perturbation theory 

breaks down 
–  Definition of “non-linear scale”? 

•  At this point we have few options: 
–  Analytical models of non-linear growth. 

•  Zel’dovich approximation. 
•  Spherical top-hat collapse. 

–  Perturbation theory. 
•  Realm of validity?  Convergence criterion? 
•  Good for small corrections to almost linear problems. 

–  Direct simulation. 
•  Numerical convergence. 
•  What models to run? 
•  Missing physics. 



Notation	


δ(x) =
ρ(x) − ρ̄

ρ̄
=

δρ

ρ
(x)

δ(k) =
�

d3x δ(x) eik·x

�δ(k)δ�(k�)� = (2π)3δD(k− k�)P (k)

∆2(k) =
k3P (k)

2π2

ξ(x) =
�

d3k

(2π)3
P (k)eik·x

=
�

dk

k
∆2(k)j0(kr)



Linear PT	

•  For many scales and most of age of 

Universe linear perturbation theory is 
valid. 

•  Transfer function, T(k), encodes 14Gyr 
of evolution. 
‒  δtoday(k)~(growth) × T(k)δinit(k). 
– Main features RD->MD->ΛD. 
– Structure only grows when matter 

dominates energy density of Universe. 



Eisenstein (2002)	


To
ta

l m
at

te
r p

ow
er

 sp
ec

tru
m
	


ωm	

ωb & ωm	


Matter power spectrum: PL(k)	
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Non-linearity	




Scale of non-linearity	

•  There are several ways to define a “scale” of 

non-linearity. 
•  Where Δ2(k)=1 (or ½, or …). 

–  Dangerous when Δ2(k) is very flat. 
•  By the rms linear theory displacement. 

•  Where the 2nd order correction to some 
quantity is 1% (10%) of the 1st order term. 

Rnl ∝
1

k2
nl

∝
�

dk

k

∆2(k)
k2

∝
�

dk P (k)
2	
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Perturbation theory	

•  There is no reason (in principle) to stop at 

linear order in perturbation theory. 
–  Can expand to all orders: δ=δ(1)+δ(2)+δ(3)+... 
–  Can sum subsets of terms. 
–  Usefulness/convergence of such an expansion not 

always clear. 
•  Consider only dark matter and assume we 

are in the single-stream limit. 
Peebles (1980), Juszkiewicz (1981), Goroff++(1986),	

Makino++(1992), Jain&Bertschinger(1994), Fry (1994).	

Reviews/comparison with N-body:	

  Bernardeau++(2002; Phys. Rep. 367, 1).	

  Carlson++(2009; PRD 80, 043531)	




Equations of motion	


∂δ
∂τ + �∇ · [(1 + δ)�v] = 0

∂�v
∂τ +H�v +

�
�v · �∇

�
�v = −�∇Φ

∇2Φ = 3
2H

2δ

•  Very familiar looking fluid equations 
o  means we can borrow methods/ideas from other fields. 

•  Note the quadratic nature of the non-linearity. 
•  Since equations are now non-linear, can’t use super-
position of (exact) solutions even if they could be found! 
•  Proceed by perturbative expansion. 

Under these approximations, and assuming Ωm=1	


G
auge?	




Velocities are ≈ potential flow	
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Assume that v 
comes from a 
potential flow (self-
consistent; curl[v]
~a-1 at linear order) 
then it is totally 
specified by its 
divergence, θ. 	




Go into Fourier space	

Putting the quadratic terms on the rhs and going into 
Fourier space: 

∂δ(�k)
∂τ + θ(�k) = −

� d3q
(2π)3

�k·�q
q2 θ(�q)δ(�k − �q),

∂θ(�k)
∂τ +Hθ(�k) + 3

2ΩmH
2δ(�k) = −

� d3q
(2π)3

k2 �q·(�k−�q)

2q2|�k−�q|2

× θ(�q)θ(�k − �q).

v~(q/q2)θ	
Div	
 Product=	

Convolution	




Linear order	

•  To lowest order in δ and θ:	


•  with f(z)~Ωm
0.6=1 for Ωm=1 and D(a)~a. 

•  Decaying mode, δ~a-3/2, has to be zero for δ 
to be well-behaved as a->0. 

•  Define δ0=δL(k,z=0). 

δL(k, z) =
D(z)
D(zi)

δi(k)

θL(k, z) = −f(z)H(z)
D(z)
D(zi)

δi(k)



Standard perturbation theory	

•  Develop δ and θ as power series: 

•  then the δ(n) can be written 

•  with a similar expression for θ(n). 
•  The Fn and Gn are just ratios of dot products of the qs 

and obey simple recurrence relations. 

δ(k) =
∞�

n=1

anδ(n)(k)

θ(k) = −H

∞�

n=1

anθ(n)(k)

δ(n)(k) =
�

d3q1d3q2 · · · d3qn

(2π)3n
(2π)3δD

��
qi − k

�

× Fn ({qi}) δ0(q1) · · · δ0(qn)



Recurrence relations I	

•  Plugging the expansion into our 

equations and using 
–  (d/dτ)an=nHan 

–  (d/dτ)H=(-1/2)H2 for EdS 
•  we have (canceling H from both sides): 

nδ(n) + θ(n) = −
�

d3q1

(2π)3
d3q2

(2π)3
(2π)3δ(�k − �q1 − �q2)

�k · �q1

q2
1

n−1�

m=1

θm(�q1)δn−m(�q2)

3δ(n) + (2n + 1)θ(n) = −
�

d3q1

(2π)3
d3q2

(2π)3
(2π)3δ(�k − �q1 − �q2)

k2(�q1 · �q2)
q2
1q2

2

n−1�

m=1

θm(�q1)θn−m(�q2)



Recurrence relations II	

•  Which we can rewrite 

•  where An and Bn are the rhs mode-coupling integrals. 
•  This generates recursion relations for the Fn and Gn 

(because of the sums in An and Bn) 

δ(n) =
(2n + 1)An −Bn

(2n + 3)(n− 1)
, θ(n) =

−3An + nBn

(2n + 3)(n− 1)

Gn =
n−1�

m=1

Gm

(2n + 3)(n− 1)

�
3
�k · �k1

k2
1

Fn−m + n
k2(�k1 · �k2)

k2
1k

2
2

Gn−m

�

Fn =
n−1�

m=1

Gm

(2n + 3)(n− 1)

�
(2n + 1)

�k · �k1

k2
1

Fn−m +
k2(�k1 · �k2)

k2
1k

2
2

Gn−m

�



Example: 2nd order	


•  The coupling function: 

•  where we have symmetrized the 
function in terms of its arguments. 
– Note: this function peaks when k1~k2~k/2. 
– This will be important later. 

F2(k1,k2) =
5
7

+
2
7

(k1 · k2)
2

k2
1k

2
2

+
(k1 · k2)

2
�
k−2
1 + k−2

2

�



Formal development	

•  We can make the expressions above more 

formal by defining η=ln(a) and 

•  then writing 

•  with the obvious definitions of Ω and γ. 
•  We can also define P~<φφ>, B~<φφφ> so e.g. 

�
φ1

φ2

�
= e−η

�
δ

−θ/H

�

∂ηφa = −Ωabφb + eηγabcφbφc

∂ηPab = −ΩacPcb − ΩbcPac + eη

�
d3q [γacdBbcd + Bacdγbcd]



Power spectrum	


•  If the initial fluctuations are Gaussian 
only expectation values even in δ0 
survive: 
– P(k) ~ <[δ(1)+δ(2)+δ(3)+…][δ(1)+δ(2)+δ(3)+…]> 
–          = P(1,1) + 2P(1,3) + P(2,2) + … 

•  with terms like <δ(1)δ(2)> vanishing 
because they reduce to <δ0δ0δ0>. 



Perturbation theory: diagrams	


δn(k) =
k

qn

q1

δ0(qn)

...

δ0(q2)

δ0(q1)

Fn

q

×

q
′

=
q q

′

≡ (2π)3δD(q+q
′)P0(q),

× = 2
k -k

q

k − q

−q

q − k

= 2

∫
d3q

(2π)3
F2(q, k − q)F2(−q, q − k)P0(q)P0(|k − q|)

Just as there is a 
diagrammatic short-hand for 
perturbation theory in 
quantum field theory, so there 
is in cosmology:  



Example: 2nd order	

P (1,3)(k) =

1
252

k3

4π2
PL(k)

� ∞

0
dr PL(kr)

�
12
r2
− 158 + 100r2 − 42r4

+
3
r2

(r2 − 1)3(7r2 + 2) ln
����
1 + r

1− r

����

�
,

P (2,2)(k) =
1
98

k3

4π2

� ∞

0
dr PL(kr)

� 1

−1
dx PL

�
k
�

1 + r2 − 2rx
�

× (3r + 7x− 10rx2)2

(1 + r2 − 2rx)2
.

Perturbation theory enables the generation of truly impressive 
looking equations which arise from simple angle integrals.	

Like Feynman integrals, they are simple but look erudite!	




Example: 2nd order	

•  At low k, P(2,2) is positive and P(1,3) is negative 

–  Large cancellation. 
•  For large k total contribution is negative: 

–  P(2,2)~ (1/4) k2Σ2 PL(k) 
–  P(1,3)~ -(1/2) k2Σ2 PL(k) 

•  Here Σ is the rms displacement (in each 
component) in linear theory. 
–  It will come up again!! 

Σ2 =
1

3π2

� ∞

0
dq PL(q)



Example	

The lowest order correction 
to the matter power spectrum 
at z=0 (1-loop SPT).	


Note the improvement at low k where 
non-linear growth causes a suppression 
of power (pre-virialization).	




Beyond 2nd order	

•  Expressions for higher orders are easy to 

derive, especially using computer algebra 
packages. 

•  Using rotation symmetry the Nth order 
contribution requires mode coupling integrals 
of dimension 3N-1. 
–  Best done using Monte-Carlo integration. 
–  Prohibitive for very high orders. 
–  Not clear this expansion is converging! 



Comparison with exact results	


Carlson++09	


Broad-band shape of PL has 
been divided out to focus on 
more subtle features. 	


Linear	

1st order correction	

2nd order correction	




Including bias	

•  Perturbation theory clearly cannot describe the 

formation of collapsed, bound objects such as dark 
matter halos. 

•  We can extend the usual thinking about “linear bias” 
to a power-series in the Eulerian density field: 
‒  δobj = Σ bn(δn/n!) 

•  The expressions for P(k) now involve b1 to lowest 
order, b1 and b2 to next order, etc. 
–  The physical meaning of these terms is actually hard to 

figure out, and the validity of the defining expression is 
dubious, but this is the standard way to include bias in 
Eulerian perturbation theory. 



Other methods	

•  Renormalized perturbation theory 

–  A variant of “Dyson-Wyld” resummation. 
–  An expansion in “order of complexity”. 

•  Closure theory 
–  Write expressions for (d/dτ)P in terms of P, B, T, … 
–  Approximate B by leading-order expression in SPT. 

•  Time-RG theory (& RGPT) 
–  As above, but assume T=0 
–  Good for models with mν>0 where linear growth is scale-

dependent. 
•  Path integral formalism 

–  Perturbative evaluation of path integral gives SPT. 
–  Large N expansion, 2PI effective action, steepest descent. 

•  Lagrangian perturbation theory 

(see Carlson++09 for references)	




Some other theories	


1st SPT	

Large-N	

LPT	

Time-RG	

RGPT	




Other statistics	


PT makes predictions 
for other statistics as 
well.  For example, the 
power spectra of the 
velocity and the 
density-velocity cross 
spectrum.  Here it 
seems to do less well.	

SPT	

RPT	

Closure	

Time-RG	




Some other quantities	

1st SPT	

LPT	

RPT	

Closure	

Large-N	


Carlson++09	


The propagator, or	


which measures the 
decoherence of the 
final density field due 
to non-linear 
evolution.	


G(k) ∝ �δNLδ∗L�
�δLδ∗L�



Lagrangian perturbation theory	


•  A different approach to PT, which has been radically 
developed recently by Matsubara and is very useful 
for BAO. 
–  Buchert89, Moutarde++91, Bouchet++92, Catelan95, Hivon++95. 
–  Matsubara (2008a; PRD, 77, 063530) 
–  Matsubara (2008b; PRD, 78, 083519) 

•  Relates the current (Eulerian) position of a mass 
element, x, to its initial (Lagrangian) position, q, 
through a displacement vector field, Ψ. 



Lagrangian perturbation theory	

δ(x) =

�
d3q δD(x− q−Ψ)− 1

δ(k) =
�

d3q e−ik·q
�
e−ik·Ψ(q) − 1

�
.

d
2Ψ
dt2

+ 2H
dΨ
dt

= −∇xφ [q + Ψ(q)]

Ψ(n)(k) =
i

n!

� n�

i=1

�
d3ki

(2π)3

�
(2π)3δD

�
�

i

ki − k

�

× L(n)(k1, · · · ,kn,k)δ0(k1) · · · δ0(kn)



Kernels	


L(1)(p1) =
k
k2

(1)

L(2)(p1,p2) =
3
7

k
k2

�
1−

�
p1 · p2

p1p2

�2
�

(2)

L(3)(p1,p2,p3) = · · · (3)

k ≡ p1 + · · · + pn



Standard LPT	

•  If we expand the exponential and keep terms 

consistently in δ0 we regain a series δ=δ(1)+δ(2)+
… where δ(1) is linear theory and e.g. 

•  which regains “SPT”. 
–  The quantity in square brackets is F2. 

δ(2)(k) =
1
2

�
d3k1d3k2

(2π)3
δD(k1 + k2 − k)δ0(k1)δ0(k2)

×
�
k · L(2)(k1,k2,k) + k · L(1)(k1)k · L(1)(k2)

�

F2(k1,k2) =
5
7

+
2
7

(k1 · k2)
2

k2
1k

2
2

+
(k1 · k2)

2
�
k−2
1 + k−2

2

�



LPT power spectrum	

•  Alternatively we can use the expression for δk 

to write 

•  where ΔΨ=Ψ(q)-Ψ(0). 
•  Expanding the exponential and plugging in for 
Ψ(n) gives the usual results. 

•  BUT Matsubara suggested a different and 
very clever approach. 

P (k) =
�

d3q e−i�k·�q
��

e−i�k·∆�Ψ
�
− 1

�



Cumulants	

•  The cumulant expansion theorem allows us to write 

the expectation value of the exponential in terms of 
the exponential of expectation values. 

•  Expand the terms (kΔΨ)N using the binomial theorem. 
•  There are two types of terms: 

–  Those depending on Ψ at same point. 
•  This is independent of position and can be factored out 

of the integral. 

–  Those depending on Ψ at different points. 
•  These can be expanded as in the usual treatment. 



Example	

•  Imagine Ψ is Gaussian with mean zero. 
•  For such a Gaussian: <eΨ>=exp[σ2/2]. 

P (k) =
�

d3qe−ik·q
��

e−iki∆Ψi(q)
�
− 1

�

�
e−ik·∆Ψ(q)

�
= exp

�
−1

2
kikj �∆Ψi(q)∆Ψj(q)�

�

kikj �∆Ψi(q)∆Ψj(q)� = 2k2
i �Ψ2

i (0)� − 2kikjξij(q)

Keep exponentiated.	
 Expand	




Resummed LPT	

•  The first corrections to the power spectrum are then:  

•  where P(2,2) is as in SPT but part of P(1,3) has been 
“resummed” into the exponential prefactor. 

•  The exponential prefactor is identical to that obtained 
from 
–  The peak-background split (Eisenstein++07) 
–  Renormalized Perturbation Theory (Crocce++08). 

P (k) = e−(kΣ)2/2
�
PL(k) + P (2,2)(k) + �P (1,3)(k)

�
,



Beyond real-space mass	

•  One of the more impressive features of Matsubara’s approach is 

that it can gracefully handle both biased tracers and redshift 
space distortions. 

•  In redshift space, in the plane-parallel limit,  

•  In PT   

•  Again we’re going to leave the zero-lag piece exponentiated so 
that the prefactor contains 

•  while the ξ(r) piece, when FTed, becomes the usual Kaiser 
expression plus higher order terms.  

kikjRiaRjbδab = (ka + fkµ�za) (ka + fkµ�za) = k2
�
1 + f(f + 2)µ2

�

Ψ(n) ∝ Dn ⇒ R(n)
ij = δij + nf �zi�zj

Ψ→ Ψ +
�z · Ψ̇
H

�z = RΨ



Beyond real-space mass	

•  One of the more impressive features of Matsubara’s approach is 

that it can gracefully handle both biased tracers and redshift 
space distortions. 

•  For bias local in Lagrangian space: 

•  we obtain 

•  which can be massaged with the same tricks as we used for the 
mass. 

•  If we assume halos/galaxies form at peaks of the initial density 
field (“peaks bias”) then explicit expressions for the integrals of 
F exist. 

δobj(x) =
�

d3q F [δL(q)] δD(x− q−Ψ)

P (k) =
�

d3q e−ik·q
��

dλ1

2π

dλ2

2π
F (λ1)F (λ2)

�
ei[λ1δL(q1)+λ2δL(q2)]+ik·∆Ψ

�
− 1

�



The answer	

P (s)

obj = e−[1+f(f+2)µ2]k2Σ2/2

�
�
b + fµ2

�2
PL +

�

n,m

µ2nfmEnm

�

Zel’dovich	

damping	


Mode coupling terms 
up to E44. These terms 
involve b1 and b2.	


Note angle 
dependence of 
damping.	




Non-linearities and BAO	




Acoustic oscillations	


First “compression”,	

at kcstls=π.  Density 
maxm, velocity null.	


First “rarefaction” 
peak at kcstls=2π	


Velocity maximum	


Acoustic scale is set by the sound horizon at last scattering:  s = cstls	




CMB calibration	

•  Not coincidentally the sound horizon is 

extremely well determined by the structure of 
the acoustic peaks in the CMB. 

Dominated by uncertainty in 
ρm from poor constraints near 
3rd peak in CMB spectrum.	

(Planck will nail this!)	


WMAP 5th yr data	




Baryon oscillations in P(k)	


•  Since the baryons contribute ~15% of the total matter density, the 
total gravitational potential is affected by the acoustic oscillations 
with scale set by s. 

•  This leads to small oscillations in the matter power spectrum P(k). 
–  No longer order unity, like in the CMB 
–  Now suppressed by Ωb/Ωm ~ 0.1 

•  Note: all of the matter sees the acoustic oscillations, not just the 
baryons. 



Baryon (acoustic) oscillations	

R

M
S 

flu
ct

ua
tio

n	


Wavenumber	




Divide out the gross trend …	

A damped, almost harmonic sequence of “wiggles” in the power 

spectrum of the mass perturbations of amplitude O(10%). 



In configuration space	

•  The configuration space picture offers some important insights.  
•  In configuration space we measure not power spectra but correlation 

functions: ξ(r)=∫ P(k)eikrd3k=∫ Δ2(k)j0(kr) dlnk.. 
•  A harmonic sequence would be a δ-function in r, the shift in frequency 

and diffusion damping broaden the feature. 

Acoustic feature at 
~100 Mpc/h with 
width ~10Mpc/h 
(Silk scale)	




Effects of non-linearity on BAO	

•  Non-linear evolution has 3 effects on the 

power spectrum: 
–  It generates “excess” high k power, reducing the 

contrast of the wiggles. 
–  It damps the oscillations. 
–  It generates an out-of-phase component. 

•  In configuration space: 
–  Generates “excess” small-scale power. 
–  Broadens the peak. 
–  Shifts the peak. 



Non-linearities smear the peak	


Broadening of feature due 
to Gaussian smoothing and 
~0.5% shift due to mode 
coupling. 

Loss of contrast and 
excess power from 
non-linear collapse. 



Understanding “shifts”	

•  We want to fit for the position of the acoustic 

feature while allowing for variations in the 
broadband shape (due e.g. to biasing). 
–  Pfit(k) = B(k) Pw(k,α) + A(k) 
–  B(k) and A(k) are smooth functions. 

•  Can take B(k)=const and A(k) as a spline, polynomial, Pade, ... 

‒  α measures shift relative to “fiducial” cosmology. 
–  Pw(k,α) is a template. 

•  Numerous arguments suggest Pw(k,α)=exp[-k2Σ2/2]PL(k/α). 
•  Take Σ to be a free parameter, perhaps with a prior. 

•  How does this do? 
Argument from 
Padmanabhan & White (2009);	

see also Smith++08.	




Measuring shifts in cCDM	

•  Any “shift” in the acoustic scale is small in 
ΛCDM, and therefore hard to study. 

•  Work with a “crazy” cosmology 
‒  Ωm=1, ΩB=0.4, h=0.5, n=1, σ8=1. 
–  Sound horizon 50h-1Mpc, not 100h-1Mpc. 

•  The fitted shifts are (α-1 in percent): 
z	
 DM	
 xδL	
 w/P22	


0.0	
 2.91 ± 0.20	
 -0.2 ±0.1	
 -0.03 ± 0.16	

0.3	
 1.88 ± 0.12	
 -0.2 ±0.1	
 -0.38 ± 0.09	

0.7	
 1.17 ± 0.07	
 -0.1 ±0.1	
 -0.12 ± 0.05	

1.0	
 0.88 ± 0.06	
 -0.1 ±0.1	
 -0.04 ± 0.04	




Shifts vs time	


Amplitude of the shift 
vs. time (redshift) for 
the mass.	


Shifts are consistent 
with D2 scaling 
(dotted) suggesting an 
origin from 2nd order 
terms …	




Where do the shifts come from?	


z	
 DM	
 xδL	
 w/P22	


0.0	
 2.91 ± 0.20	
 -0.2 ±0.1	
 -0.03 ± 0.16	

0.3	
 1.88 ± 0.12	
 -0.2 ±0.1	
 -0.38 ± 0.09	

0.7	
 1.17 ± 0.07	
 -0.1 ±0.1	
 -0.12 ± 0.05	

1.0	
 0.88 ± 0.06	
 -0.1 ±0.1	
 -0.04 ± 0.04	


Recall in PT we can write δ=δ(1)+δ(2)+… or	

P = {P11 + P13 + P15 + …} + {P22 + … } = P1n + Pmn.	

We can isolate these two types of terms by considering the 
cross-spectrum of the final with the initial field, which 
doesn’t contain Pmn.	


Shifts in the cross-spectrum are an order of magnitude 
smaller than shifts in the auto-spectrum!	


P1n(k) ∼ PL(k)
� �

k

�
d3qkPL(qk)

�
Fn(· · · )

Broad kernel 
suppresses 
oscillations.	




Mode-coupling terms	


•  The P1n terms are benign. 
•  By contrast the Pmn terms involve integrals of 

products of PLs times peaked kernels. 
•  Example: P22 ~ ∫ PLPL F2 and F2 is sharply peaked 

around q1≈q2≈k/2.  
•  Thus the ∫ PLPL term contains an out-of-phase 

oscillation 
–  PL~ … + sin(kr):  PLPLF2 ~ sin2(kr/2) ~ 1+cos(kr) 

•  Since cos(x)~d/dx sin(x) this gives a “shift” in the 
peak 
–  P(k/α) ~ P(k) - (α-1) dP/dlnk + … 

Recall in PT we can write δ=δ(1)+δ(2)+… or	

P = {P11 + P13 + P15 + …} + {P22 + … } = P1n + Pmn.	




Mode-coupling approximates derivative	


Up to an overall 
factor the mode-
coupling term, P22, is 
well approximated by 
dPL/dlnk.	




Modified template	

•  This discussion suggests a modified 

template, which has just as many free 
parameters as our old template: 

•  This removes most of the shift. 

Pw(k,α) = exp
�
−k2Σ2

2

�
PL(k/α)

+ exp
�
−k2Σ2

1

2

�
P22(k/α) .

z	
 DM	
 xδL	
 w/P22	


0.0	
 2.91 ± 0.20	
 -0.2 ±0.1	
 -0.03 ± 0.16	

0.3	
 1.88 ± 0.12	
 -0.2 ±0.1	
 -0.38 ± 0.09	

0.7	
 1.17 ± 0.07	
 -0.1 ±0.1	
 -0.12 ± 0.05	

1.0	
 0.88 ± 0.06	
 -0.1 ±0.1	
 -0.04 ± 0.04	


Padm
anabhan &

 W
hite (2009)	




Biased tracers?	

•  In order to remove the shift we needed to 

know the relative amplitude of P11 and P22. 
–  For the mass, this is known. 

•  What do we do for biased tracers? 
–  Eulerian bias 

–  Lagrangian bias 
Ph =

�
bE
1

�2
(P11 + P22) + bE

1 bE
2

�
3
7
Q8 + Q9

�
+

(bE
2 )2

2
Q13 + · · ·

Ph = exp
�
−k2Σ2

2

� ��
1 + bL

1

�2
P11 + P22 + bL

1

�
6
7
Q5 + 2Q7

�
+ bL

2

�
3
7
Q8 + Q9

�

+
�
bL
1

�2
[Q9 + Q11] + 2bL

1 bL
2 Q12 +

1
2

�
bL
2

�2
Q13

�
+ · · ·



Mode-coupling integrals	

Qn(k) =

k3

4π2

� ∞

0
dr PL(kr)

� 1

−1
dxPL(k

�
1 + r2 − 2rx) �Qn(r, x)

�Q1 = r2(1−x2)2

y2 , �Q2 = (1−x2)rx(1−rx)
y2 ,

�Q3 = x2(1−rx)2

y2 , �Q4 = 1−x2

y2 ,

�Q5 = rx(1−x2)
y , �Q6 = (1−3rx)(1−x2)

y ,

�Q7 = x2(1−rx)
y , �Q8 = r2(1−x2)

y ,
�Q9 = rx(1−rx)

y , �Q10 = 1− x2,
�Q11 = x2, �Q12 = rx, �Q13 = r2

(Matsubara 2008)	




Out-of-phase?	


The numerous combinations that come in are also well 
approximated by the (log-)derivative of P11!  All of these terms can 

be effectively written as:	


Ph = exp
�
−k2Σ2

2

�
[B1PL + B2P22] .



Size of the shifts?	

•  Simple model explains B1-B2 relation. 

–  True for a variety of cosmologies, including ΛCDM. 
–  Can also be measured from simulations (using some tricks). 

•  For ΛCDM the shifts are: 
‒  α-1~0.5% x D2 x B2/B1 

Shifts at z=0 for	


Halos of mass M	

Halos above M	

N~[1+M/M1]	


At higher z the shift decreases as D2.	


Recall, the final error in BAO scale is the 
uncertainty in this correction, not the size 
of the correction itself!	




Redshift space	


•  In resummed LPT we can also consider the 
redshift space power spectrum for biased 
tracers. 

•  For the isotropic P(k) find a similar story 
though now the scaling coefficients depend 
on f~dD/dlna. 
–  Expressions become more complex, but the 

structure is unchanged. 
•  The amplitude of the shift increases slightly. 



Perturbation theory & BAO	

•  Meiksin, White & Peacock, 1999 

–  Baryonic signatures in large-scale structure (SPT) 

•  Crocce & Scoccimarro, 2007 
–  Nonlinear Evolution of Baryon Acoustic Oscillations 

•  Matsubara, 2008ab 
•  Jeong & Komatsu, 2006, 2009 

–  Perturbation theory reloaded I & II 

•  Pietroni, 2008; Lesgourgues et al. 2009; Anselmi et al. 2010; Elia et al. 
2010 

–  Flowing with time, resummation schemes. 

•  Padmanabhan & White 2009; Padmanabhan et al., 2009; Noh et al. 
2009 

–  Calibrating the baryon oscillation ruler for matter and halos 
–  Reconstructing baryon oscillations: A Lagrangian theory perspective 
–  Reconstructing baryon oscillations. 

•  Nishimichi et al., 2007, 2010; Taruya et al., 2009, 2010. 
–  Characteristic scales of BAO from perturbation theory 
–  Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation 

Theory in Real and Redshift Spaces 



Reconstruction���
an analytic understanding?	




Reconstruction and LPT	

•  Recall that the effect of non-linearity was to broaden 

(and slightly shift) the acoustic peak. 
•  The broadening was equal to the Zel’dovich 

displacement. 
–  Much of the  broadening comes from large scales. 

•  Since those scales are measured by the survey, one 
could hope to “reconstruct” the initial, unbroadened 
feature. 
–  Eisenstein, Seo, Sirko & Spergel (2007). 

•  What does this procedure do? 
–  Lagrangian perturbation theory is almost perfectly suited to 

studying reconstruction. 



Contributions to the displacement	




Reconstruction procedure	

1.  Smooth the density field 

•  δ(k) -> δ(k) S(k) 

2.  Compute the negative Zel’dovich displacement, s, 
from the smooth field. 

•  s(k) =(-ik/k2) S(k) δ(k)  

3.  Shift particles by s to generate “displaced” field, δd. 
•  In linear theory δd=0. 

4.  Shift spatially uniform grid of points by s to give 
“shifted” field, δs. 

•  In linear theory δs=-δd. 

5.  Define δr=δd-δs (equals δ in linear theory). 
6.  Note: S->0 is equivalent to no reconstruction. 



In pictures	


Initial	
 Recon	
 Final/NL	


Note: the final field has sharper, more pronounced peaks than 
either the initial or reconstructed density fields.	


Noh++09	




Sharpens the peak	


The z=0 
correlation 
function of the 
mass in ΛCDM is 
“sharpened” by 
reconstruction.	


The linear field is 
not fully 
recovered.	




LPT	

•  Recall in LPT 
•  The displaced field is generated by Ψ+s 
•  The shifted field is generated by s. 
•  To lowest order δr=δL. 
•  To next order 

δ(k) =
�

d3q e−ik·q
�
e−ik·Ψ(q) − 1

�

δ(2)
r = δ(2) − 1

2

�
d3k1d3k2

(2π)3
δ(D) (k1 + k2 − k)

× δl(k1)δl(k2) k · L(1)(k1)k · L(1)(k2)
× [S(k1) + S(k2)]

Why does reconstruction help?	




A toy model	

•  Imagine Ψ=ΨL+ΨH both Gaussian and 

uncorrelated. 
‒  ΨL is generated by δlin, 
‒  ΨH contains no BAO.  

P (k) =
�

d3qe−ik·q
��

e−iki∆Ψi(q)
�
− 1

�

�
e−ik·∆Ψ(q)

�
= exp

�
−1

2
kikj �∆Ψi(q)∆Ψj(q)�

�

kikj �∆Ψi(q)∆Ψj(q)� = 2k2
i �Ψ2

i (0)� − 2kikjξij(q)



A toy model	

•  ξij(0)=(δij/2) Σ2, and Σ2≈ΣL

2 

•  Leave zero-lag piece exponentiated: 

•  Now s(k)=-S(k)ΨL(k), so the displaced and 
shifted fields are generated by [1-S]ΨL+ΨH 
and –SΨL. 

P (k) = e−k2Σ2
L/2

�
d3q e−ikiqi ekikjξij(q) .

Pobs(k) = e−
1
2 k2Σ2

LPL(k) + Pmc(k) + · · ·

O(ΨH
2) and O(ΨL

4)	




A toy model	

•  The reconstructed power spectrum is 

–  Pr=(δs-δd)2=Pss+Pdd-2Psd 

•  with: 
–  Pss=exp[-k2Σss

2/2]S2(k) PL(k)+… 
–  Pdd=exp[-k2Σdd

2/2][1-S(k) ]2PL(k)+… 
–  etc. 

•  And modified damping terms (e.g.): 

•  The effect of the S and [1-S] terms and the 
structure of the damping is to “effectively” 
reduce Σ to ~0.5 Σ. 

Σ2
ss =

1
3π2

�
dp S2(p)PL(p)



LPT	

•  A very similar calculation carries through in the full 

LPT, except you have to keep more terms in the 
exponential if things aren’t all Gaussian. 

•  The damping turns out to be the same. 
–  We were working to lowest order in Σ, so this is not 

surprising. 

•  You additionally get the mode-coupling terms. 
–  Slightly painful since you need to redo all of Matsubara with 

3 different spectra. 

•  Find that the mode-coupling term is suppressed. 



The details	

P dd ∝ PLS̄2 +

9
98

Q1 +
3
7
Q(1d1d)

2 +
1
2
Q(dddd)

3

+ S̄
�
10
21

R1 +
6
7
R(d)

2

�

+ �F ��
�
2PLS̄ +

6
7
Q(1d11)

5 + 2Q(1ddd)
7 +

10
21

R1 +
6
7
R(d)

2 +
6
7
S̄(R1 + R2)

�

+ �F ���
�
3
7
Q8 + Q(1d1d)

9

�

+ �F ��2
�
PL +

6
7
(R1 + R2) + Q(1d1d)

9 + Q(11dd)
11

�

+ 2�F ���F ���Q(111d)
12 +

1
2
�F ���2Q13 (1)

Noh++09; based on 
Matsubara 07 & 08	


Q(1ddd)
7 (k) =

k3

(2π)2

� ∞

0
dr PL(kr)S̄(kr)

� +1

−1
dµ PL(ky)S̄(ky)S̄(ky) �Q7(r, µ)



LPT agrees with simulations	

Noh++09	


Recon.	


Final	


Displaced	


Shifted	


Matter (z=0)	




Coherence regained	

Noh++09	


The cross-correlation between the initial field 
and the other fields for halos above 1013.	


Final	


Recon	


Shifted	


Displaced	




Out-of-phase term reduced	


Out-of-phase terms in P(k) for halos 
more massive than 1013.	


Linear/2	


Mode 
coupling 
term	


dPL/dlnk	


Recon	




Effects of shot-noise	

•  Within the LPT formalism the effects of shot-noise 

from finite galaxy number density are easy to include. 
•  The largest effect is a change in the damping scale: 

•  where PN=1/(b2n) is the shot-noise power. 
•  Gains saturate around n~10-4 (h/Mpc)3. 

White (2010)	


Σ2
ss → 1

3π2

�
dp S2(p) [PL(p) + PN (p)]

Σ2
dd → 1

3π2

�
dp [1− S(p)]2 PL(p) + S2(p)PN (p) ,



“Strong” non-linearity	


Martin White 
UCB/LBNL 



Limited options	

•  Beyond a certain scale, linear perturbation theory 

breaks down 
–  Definition of “non-linear scale”? 

•  At this point we have few options: 
–  Analytical models of non-linear growth. 

•  Zel’dovich approximation. 
•  Spherical top-hat collapse. 

–  Perturbation theory. 
•  Realm of validity?  Convergence criterion? 
•  Good for small corrections to almost linear problems. 

–  Direct simulation. 
•  Numerical convergence. 
•  What models to run? 
•  Missing physics. 



Zel’dovich approximation	

•  Assume particles move in a straight line with their 

linear perturbation theory velocity. 
•  Defines a mapping from initial (Lagrangian) position, 

q, to final (Eulerian) position, x: 
–  x=q+Ψ  with  Ψ(q,t)=D(t)Ψ(q) and Ψi=dΦ/dqi 

‒  Ψk = -ik/k2 δk 

•  If the initial field is uniform, the final density is the 
Jacobian of this mapping. 
‒  ρ~[(1-Dα)(1-Dβ)(1-Dγ)]-1 

‒  α,β,γ e-values of –d2Φ/dqidqj 
•  Collapse takes place first along largest e-

value (pancake/sheet), then middle (filament) 
then final (halo). 



The cosmic web	

The Zel’dovich approximation, plus the statistics of Gaussian fields, 

qualitatively describes large-scale structure.	




Numerical simulations	

•  Our ability to simulate structure formation has increased 

tremendously in the last decade. 
•  Direct simulation of the N-body problem 

–  Begin at early times, but during matter domination, by displacing particles 
from an initial grid using 1LPT or 2LPT. 

–  Monte-Carlo integration of the Vlasov equation using “super-particles” which 
move along the characteristics. 

–  Soften the forces to avoid particle-particle scattering or integrating 
unphysical, tight, orbiting particles. 

–  Want to approach the “fluid” limit with very large N. 
–  Pure N-body codes scale “almost” perfectly. 

•  Our understanding of -- or at least our ability to describe -- 
galaxy formation has also increased dramatically. 

–  Most cosmology probes observe galaxies. 
–  The fundamental unit of structure theoretically is the dark matter halo. 
–  Galaxies live in dark matter halos in ways we increasingly understand. 



Numerical convergence	

•  Numerous tests of numerical convergence can be 

found in: 
–  Heitmann et al. (2010; ApJ, 715, 104) 
–  Heitmann et al. (2010; ApJ, 705, 156) 

•  Need to worry about 
–  Starting redshift and method. 
–  Force accuracy and softening. 
–  Time stepping. 
–  Box size. 
–  Number of particles. 
–  Method of computing statistic from particles. 
–  How to choose which cosmologies to run. 



Accuracy - currently demonstrated	


All codes started from the same ICs and analyzed with 
the same P(k) codes. 

Updated from 
Heitmann et al. (2007) 

Only a sub-
sample of the 
codes are 
shown here. 



Extra physics	

•  As we go to smaller scales, we must go beyond the “pure” N-

body problem and include additional physics. 
–  Hydrodynamics solvers well developed. 
–  Gas cools dramatically in deep potential wells, reaching high 

densities in a clumpy, multiphase, turbulent, magnetized ISM where 
it can form stars, which give off winds and radiation and go 
supernova injecting momentum and energy into the surrounds and 
have active galactic nuclei which can impart energy to their 
enviroments, … 

•  There is little scale separation between including “gas” physics 
and including star formation, feedback, etc. so results typically 
depend on sub-grid models. 



An example	


One possibility, from 
Jing et al. (2006), for 
the effects of baryons 
(red) and baryons 
including star-
formation and 
feedback (green) on 
the total matter 
(solid), dark matter 
(dotted) and gas 
(dashed).	




Characteristics of LSS	

•  Large-scale structure forms a beaded 

filamentary web of dark matter halos. 
– Number of halos vs. mass (etc.). 
– Spatial distribution of halos (vs. ?). 
– Properties of DM halos. 
– Beyond DM. 



Halo abundance	


•  Almost all of the mass resides in (approximately) virialized halos. 
•  Space density of halos depends primarily (exclusively?) on mass. 
•  There are a large number of low mass halos and few high mass 

halos. 
–  Very roughly dn ~ m-2 e-m 

–  As time proceeds the “characteristic” mass scale increases. 
•  The mass function is almost cosmology independent (in scaled units). 

–  This universality is not fully understood. 
•  Mass functions are used in many applications in cosmology. 



Mass function	


Bhattacharya et. al. 9

FIG. 5.— Ratio of the mass function data to the z = 0 fit of Equation (12)
(reference flat red line). The z = 1 and z = 2 datasets demonstrate that redshift
evolution is important and must be taken into account; the curves show the
corresponding fits following the time-dependence as parameterized in Equa-
tions (14). The lower panel shows the ratio of the measured mass function at
the three different redshifts to the corresponding analytic fits.

final set of parameters is the average of the three values ob-
tained using redshift outputs in pairs. Figure 5 shows that the
power law model of Equations (14) is able to capture the red-
shift evolution with an accuracy of better than 3% within the
range of 0.6 ≤ 1/σ ≤ 2.4. Note that the massive halos in our
simulation runs do not showmuch redshift evolution, indicating
that the mass function of the massive halos is a better approx-
imation to universal behavior over the redshift range z = 0! 2.
Consequently we find that only two of the four parameters of
Equations (14) show any redshift evolution. The best fit val-
ues for the parameters αi describing the redshift evolution are
α1 = 0.11, α2 = 0.01, α3 = 0.0, and α4 = 0.0. To recap, our
analytic best-fit to the mass function data uses one extra shape
parameter compared to ST to match the z = 0 data, and then in-
troduces a simple z-dependence (two more parameters) to cap-
ture non-universal behavior.
High-statistics studies of the evolution of the FOF mass func-

tion have been carried out previously. In an investigation focus-
ing mainly at high redshifts, to explain the violation of univer-
sality, Reed et al. (2007) proposed an effective spectral slope
neff set by the halo radius, parameterized as

neff = 6
d lnσ!1

d lnM
!3. (15)

This new effective slope induces a redshift dependence in the
mass function. However, as shown in Figure 6, the analytic
fit of Reed et al. (2007) is not in good agreement with our re-
sults. This discrepancy indicates that high redshift evolution of
the mass function is slower compared to that at lower redshifts.
Crocce et al. (2010) also use a simple power-law form to fit for
redshift evolution and their results are significantly closer to
ours, except at very high masses, where the discrepancy can be
traced to their use of an approximate transfer function 1 and a
small systematic offset in their fitting procedure at high masses
1 M. Crocce, private communication

FIG. 6.— Redshift dependent mass function fits as introduced by Reed et al.
(2007) and Crocce et al. (2010) compared with the numerical data of this work.
Aside from disagreement in the overall shape, the results of Reed et al. (2007)
underestimate the amount of evolution indicating that high redshift evolution
of the mass function is slower compared to that at lower redshift. The agree-
ment with Crocce et al. (2010) is better (at the 4-5% level), except for the
runaway at high masses (see discussion in Section 4.1).

FIG. 7.— Halo mass function as measured in our simulations at three differ-
ent redshifts, z = 0, 1, and 2 along with the analytic fit at each redshift.

(Cf. Section 4.1). The expressions for the fitting functions of
Reed et al. (2007) and Crocce et al. (2010) are given in Table 3.
Figure 7 shows the abundance dn/d lnM as measured in our
simulation along with the analytic fits. Figure 8 summarizes
the results from this section, showing the mass function at dif-
ferent redshifts and our best fit results.

4.3. Mass function-derived large-scale halo bias
The evolution of the spatial distribution of halos has been

studied in detail in Cole & Kaiser (1989) and subsequently in

Bhattacharya++10	


Note the 
dynamic 
range in 
this figure! 



Halo abundance: scaled units	

Tinker++08	


dn

dM
= f(σ)

ρ̄

M

d lnσ−1

dM



Other fitting forms	

8 Mass Function Predictions Beyond ΛCDM

TABLE 3
MASS FUNCTION FITTING FORMULAE DERIVED IN PREVIOUS STUDIES

Reference Fitting function f(σ) Mass Range Redshift range

Sheth & Tormen (2002) fST (σ) = 0.3222
√

2(0.75)
π

exp
[

! 0.75δ
2
c

2σ2

]

[

1+
(

σ
2

0.75δ2c

)0.3
]

δc
σ

Unspecified Unspecified

Jenkins et al. (2001) 0.315exp
[

!| lnσ!1 +0.61|3.8
]

!1.2≤ lnσ!1 ≥ 1.05 z= 0-5

Warren et al. (2006) 0.7234
(

σ!1.625 +0.2538
)

exp
[

! 1.1982
σ2

]

(1010 !1015) h!1M! z=0

Reed et al. (2007) 0.3222
√

2(0.707)
π

[

1+
(

σ
2

0.707δ2c

)0.3
+0.6G1(σ)+0.4G2(σ)

]

!0.5≤ lnσ!1 ≥ 1.2 z=0-30

× δc
σ
exp

[

! 0.764δ
2
c

2σ2 ! 0.03
(ne f f +3)2(δc/σ)0.6

]

Manera et al. (2010) fST (σ) = 0.3222
√

2a
π
exp

[

! aδ2c
2σ2

][

1+
(

σ
2

aδ2c

)p]
δc
σ

(3.3× 1013!3.3× 1015) h!1M! z=0-0.5

Crocce et al. (2010) A(z)
[

σ!a(z) +b(z)
]

exp
[

! c(z)
σ2

]

(1010 !1015) h!1M! z=0-1

Note. — Various fits from previous studies shown in Figure 4 and 6 for friends-of-friends halos of linking length b = 0.2 are listed. For Manera et al. (2010),
the parameter values are (a, p)= (0.709, 0.248) at z=0 and (0.724, 0.241) at z=0.5. For Crocce et al. (2010), the parameter values are A(z) = 0.58(1 + z)!0.13,a(z) =
1.37(1+ z)!0.15 ,b(z) = 0.3(1+ z)!0.084,c(z) = 1.036(1+ z)!0.024. For Reed et al. (2007), G1(σ) = exp

[

! (lnσ
!1!0.4)2
2(0.6)2

]

and G2(σ) = exp
[

! (lnσ
!1!0.75)2
2(0.2)2

]

with AW = 0.7234, b = 1.625, c = 0.2538, and d = 1.1982; these
values being obtained by fitting to simulation data at z = 0.
While adequate as a fitting form, Equation (11) diverges when
the normalization condition is imposed [Equation (8)]. In addi-
tion, as shown in Figure 4, this particular fit also severely un-
derestimates the mass function at high masses, by up to∼ 30%.
We present a new fitting function for f (σ). This is the sim-

plest ST modification that does not diverge but adds one extra
parameter, q̃0 (for q̃0 = 1 we recover the ST mass function):

fmod(σ,z= 0) = Ã0

√

2
π
exp

[

!
ã0δ2c
2σ2

]

[

1+
(

σ2

ã0δ2c

) p̃0
]

(

δc
√
ã0

σ

)q̃0

.

(12)
We use a χ2 technique to determine the best fit f (σ) that matches
the mass function data obtained by combining all of the ΛCDM
runs. That is, we minimize

χ2 =
N
∑

i=1

f (σ)mod ! f (σ)data
(∆ f (σ)data)2

, (13)

where f (σ)mod, f (σ)data and∆ f (σ)data are given by Equations (12),
(10), and (A4) respectively.
Minimizingχ2 gives the best fit parameter values: Ã0 = 0.333,

ã0 = 0.788, p̃0 = 0.807, and q̃0 = 1.795 with a χ2 per degree of
freedom of 1.15. The subscript “0” indicates that the best fit
values are specified at z = 0. The results are summarized in
Table 4. As mentioned above, this expression does not diverge
when the normalization condition is imposed, however, the best
fit does not lead to a normalization of unity. As shown in Fig-
ure 5, this modified expression agrees with the simulation data
to better than 2% accuracy at z = 0. As further discussed in Sec-
tion 4.2 a simple redshift dependence has to be introduced into
the fitting function to obtain agreement at the same accuracy
level at higher redshifts.

TABLE 4
MASS FUNCTION FITTING FORMULA DERIVED IN THIS STUDY,
VALID OVER A MASS RANGE OF (6× 1011 !3× 1015) M! AND

OVER A REDSHIFT RANGE OF Z=0-2.

fmod(σ,z) = Ã
√

2
π
exp

[

! ãδ2c
2σ2

]

[

1+
(

σ
2

ãδ2c

)p̃
]

(

δc
√
ã

σ

)q̃

Redshift Evolution

Ã = 0.333
(1+z)0.11 , ã =

0.788
(1+z)0.01 , p̃ =

0.807
(1+z)0.0 , q̃ =

1.795
(1+z)0.0

4.2. Redshift Evolution and Universality
The z = 0 mass function fit of Section 4.1 has a default uni-

versal form. However, the mass function is known to deviate
from universality – as a function of redshift – for ΛCDM cos-
mologies. As shown in Figure 5, this deviation can be as much
as 10% between redshifts z = 0! 2. In this section we extend
our fitting function to include the redshift evolution of the mass
function. We parameterize the possible redshift evolution of
each parameter via a simple power-law form

Ã = Ã0/(1+ z)α1,
ã = ã0/(1+ z)α2,
p̃ = p̃0/(1+ z)α3,
q̃ = q̃0/(1+ z)α4. (14)

In order to ensure that the expression for the redshift evolution
reproduces the mass function at any intermediate redshift when
interpolated or even extrapolated, we fit two redshift outputs at
a time. Thus we have three values for each parameter. The

(A detailed study of universality and numerical issues can be found in	

Bhattacharya++10 from which this table is taken )	


f(σ) =
M

ρ̄

dn

d lnσ−1
,

� ∞

0
d lnσ f(σ) = 1



Excursion set theory vs. peaks	

•  Excursion set formalism 

–  The most popular “theory”. 
–  The fraction of mass in halos more massive than M is related 

to the fraction of volume in which the smoothed initial density 
field is above some threshold, δc. 

–  Mass function related to random walk. 
•  Press-Schechter 1974; Bond, Cole, Efstathiou & Kaiser 1991. 

–  Spherical collapse vs. elliptical collapse approx. 
•  Mo & White, Sheth & Tormen, Zhang & Lam, … 

–  How to deal with “non-locality” of halo collapse. 
•  Statistics of (Gaussian) peaks plus a model for halo 

collapse (spherical or ellipsoidal). 
•  Bardeen, Bond, Kaiser & Szalay 1986 

–  Based on Rice (1944; 1945) who studied 1D Gaussian fields as models of 
noise in communications devices. 

•  Bond & Myers 1996. 
•  Dalal, Lithwick & White 201X. 



Excursion set theory vs. peaks	


•  Allow computation of mass function from statistics of 
initial field. 
–  Choose a filter shape, and compute integrals of linear theory 

power spectrum and plug in formulae. 
•  Not all methods self-consistent. 

–  Reasonable success for mass function often improved by 
adjusting formulae to “fit” N-body simulations. 

–  Less success for conditional mass function, merger rates 
etc. 

–  Beware when extrapolating! 



Halo bias	

•  The clustering of the rare, massive dark matter halos is enhanced 

relative to the general mass distribution 
–  Kaiser 1984; Efstathiou++88; Cole & Kaiser 1989; Bond++91; Mo & White 

1996; Sheth & Tormen 1999; …; Tinker++10; ... 

The clustering of rare halos 
thought to host quasars (here 1012 
and 1012.5 Msun/h) at z=3-4 is two 
orders of magnitude stronger than 
the clustering of the DM!	




Halo bias	

•  This enhanced clustering is known as “bias”. 
•  Bias depends on scale [b(r)], but at very large scales it becomes scale-

independent [b]. 
–  Bias, b, depends primarily on halo mass or “rarity”. 

•  In simplest models b=1+(ν2-1)/δc, where ν=δc/σ(M). 
•  For more accuracy, use N-body-calibrated fitting function. 
•  Behavior at “extremes” can depart from fitting functions! 

–  Numerical simulations now large enough to test for the dependence 
on halo formation history and other properties. 

•  Dependencies on formation redshift, internal structure, and spin. 
•  Gao++05; Wechsler++06; Harker++06; Bett++07; Wetzel++07; 

Jing++07; Gao&White07; Angulo++08 



Halo bias in simulations	
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Halo bias 
increases with 
increasing halo 
mass at fixed 
redshift, or with 
increasing 
redshift at fixed 
mass.	




Assembly bias	

Gao & White (2007)	


Solid (dashed) lines show halos in lower (upper) 20% of 
halos split on property labeled. 	




Assembly bias	

•  Assembly bias is quite difficult to explain in the 

“standard” excursion set formulation. 
–  Mass function is fraction of random walks reaching an 

absorbing barrier by mass M. 
–  Bias is dependence of mass function on large-scale density 

(early part of the walk). 
–  Assembly bias very hard to explain in this picture. 

•  Gao++05, Mo++05, Sandvik++07, Desjacques08, …  

•  Simulations did not initially shed light on explanation 
for assembly bias. 

•  Now understand that assembly bias is a simple 
consequence of non-linear collapse from Gaussian 
initial conditions. 
–  Dalal++08. 



Assembly bias: high mass.	

•  Later forming, high mass halos are more clustered 

than typical halos of the same mass. 
–  Also dependence on concentration. 

•  Massive halos collapse almost spherically from rare 
peaks in ICs. 
–  Collapse reasonably explained by STHC. 

•  For Gaussian field, bias depends on curvature, 
s=d<δ>/dlnM, of peak (as well as height). 
–  Peak curvature is “environment”: δb=δpk + s dlnM + … 
–  Peaks with smaller |s| have larger background densities. 

b− 1 ≈ 1
σ

ν − �νx�x
1− �νx�2 , ν ≡ δ

σδ
; x ≡ s

σs

(Cross-correlation coefficient)	




Bias: high mass	
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b E

Dalal++08	
 Dependence of halo bias 
on peak curvature from 
simulations (points) 
compared to the 
prediction from Gaussian 
peaks theory (line) for a 
power-law model.	

Assembly history related 
to run of δ with M – 
accretion rate related to 
peak curvature!	


~ -[d(logM)/d(log a)]-1	




Assembly bias: low mass	

•  Oldest, most concentrated, low mass halos are more 

than twice as clustered as the youngest halos of the 
same mass. 

•  Youngest ~80% of halos have 
–  b~1-δc

-1~0.4 (as expected). 

•  Oldest 20% of low mass halos act like test particles 
(b->1) 
–  Most of these are associated with nearby, high-mass halos. 
–  Early formers who’s growth is stunted by “hot” environments 

of massive neighbors. 



DM halos	

•  Generally triaxial spheroids. 
•  More elongated at 

–  Smaller radii. 
–  Larger redshifts. 
–  Higher mass. 

•  Approximately in virial equilibrium. 
•  Aligned with the filamentary, cosmic web which feeds 

halo growth. 
•  Average mass accretion exponential. 

–  In EPS formalism dM=-f(M)M dδc, with f(M)~constant. 

•  Spin parameter, λ, grows significantly in major 
mergers, slowly declines in accretion. 



Dynamical state	

(White 2002)	


Roughly 
isothermal, 
roughly 
virialized, 
self-bound 
objects.	




DM halos are aspherical and have 
significant substructure	


Region above 
a density 102 
times the 
background 
density.	

Color: log-
density.	




Spherical “NFW” profile	

Tinker++08	


M
ea

n 
in

te
rio

r d
en

sit
y	


ρ(x = r/rs) ∝ x−1(1 + x)−2



A 1-parameter family	

•  Find c=rvir/rs is a function of M. 

–  More massive halos less concentrated. 
–  c, like M, depends on definitions! 
–  c~M-0.15 

–  Large, log-normal scatter in c.  

•  The inner, r -1, part of the halo forms early and 
rs stays ~constant. 
–  Subsequent accretion kept away by angular 

momentum barrier. 
–  Concentration, c=rvir/rs ~ (1+z)-1. 



Other forms	

•  A generalized NFW makes “-1” and “-2” variable. 
•  Einasto profile: 

•  Note no cusp! 
•  Important new insights in Lithwick & Dalal (2010). 

–  Building on earlier work by Fillmore & Goldreich and 
Bertschinger. 

•  The NFW profile is “transitional”. 
–  r-3 slope comes from continued accretion of material.  This 

stops in DE-domination. 
–  Busha, Evrard & Adams (2007). 

•  Exponential truncation of NFW profile at large radius. 

ρ ∝ exp

�
−dn

��
r

re

�1/n

− 1

��
, n ≈ 5− 10



Subhalos	

•  A generic prediction of hierarchical theories, 

such as CDM, is that the virialized regions of 
DM halos contain subhalos. 
–  Self-gravitating, bound clumps of mass. 

•  Subhalos account for O(10%) of halo mass. 
•  Luminous galaxies form via the cooling and 

condensation of gas in subhalos. 



Subhalos	

•  Density profiles of subhalos similar to that of halos, but they can 

be truncated. 
•  Subhalos track DM closely in terms of density and velocity. 

–  Trends of central concentration and velocity bias with ratio of 
subhalo to host halo mass. 

–  Depends on how subhalos are selected. 
•  Beyond a certain point, the number of subhalos above a given 

mass grows linearly with host halo mass. 
–  Length of “plateau” set by dynamical friction and mean 

density of collapsed structures. 
–  Subhalo mass function and halo mass function are “scaled” 

versions of each other. 

dnsat

dMsat
∼

�
Mhost

Msat

�2

, Msat �Mhost



Thank you!	


•  I would like to thank 
– The participants. 
– The other lecturers. 
– The organizers. 
– The staff. 

•  for making this a pleasant, informative and 
productive meeting. 



The End	



