The Zel’dovich Approximation

Large-scale structure
goes ballistic

Martin White
UCB/LBNL

Built on work done with Lile Wang (undergrad), Jordan Carlson
(grad) and Beth Reid (postdoc).



Y akov Borisovich Zel’dovich
(8 March 1914 — 2 December 1987)

* The Zel’dovich approximation
* Computing the 2-pt function
* Matter
* Special cases
* Beyond real-space matter
* The ZSM/LSM
* Other statistics
* Conclusions




Zel’dovich approximation

* Following Jeans and Lifschitz, instability analysis in
cosmology was initially formulated in an Eulerian way.

« Zel'dovich introduced a Lagrangian formulation.
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An approximate solution is given for the problem of the growth of perturbations during the expansion of
matter without pressure. The solution is qualitatively correct even when the perturbations are not small.
Infinite density is first obtained on disc-like surfaces by unilateral compression.

The following layers are compressed first adiabatically and then by a shock wave. Physical conditions in the
compressed matter are analysed.
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Zel’dovich approximation

* Let us assume
—-x=q+ ¥(q,t)
— and ¥(q,t)=A(t).¥(q)
* Requiring that we reproduce linear theory,
O(X,t)~D(t)o(x), implies
— A(t)=D(t) and ¥~d®d~d( d29)
* Since
p(z,t)d’x = p(q)d°q = 1+5(z,t) =1— Ve U+
We assume W retains this form always ...
straight line (ballistic) motion!
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Statistics of large-scale structure

* How well does the Zel'dovich approximation
do quantitatively?

« Specifically, can we use it to compute the
clustering of objects in the Universe?

— Yes!

— Can compute the correlation function of halos and
galaxies, in real- and redshift-space with high
accuracy to surprisingly small scales.

« Having a fully realized (though “wrong in
detail”) model of large-scale structure
evolution enables “how does...” questions!

Like STHC ...



Do the math ...

Use a trick I learned from Matsubara’s papers on
Lagrangian perturbation theory ...

14 6(z) = /d3q 5P [x — q— ¥(q)]
Jeof e

d*k1 d3ks

SO

1+&(r=x2 —x1) = /dSQldSQQ/ (27)3 (2m)3

% e’ikl -(Xl —Q1)6ik2 '(X2 _q2)



But W 1s Gaussian ...

 Cumulant theorem
— For Gaussian x with <x>=0:
— <exp[x]> = exp[-V2<x2>]

* This allows us to rewrite our Gaussian
integral as the exponential of <WYW>,

dS
1"‘6(1'):/(27_‘_)3/2’%4’1/2

X exp [—% r—q) A7 (r— q)]

/

Aij = ([¥i(az) — Yi(ai1)] [V (az) — ¥ (aq1)])




The final result

Can express A1 and |A| analytically.

We have now reduced the calculation of the

correlation function to the evaluation of a

(simple, 3D) Gaussian integral.

— The integrand contains simple, 1D integrals of the
linear theory power spectrum.

One of the integrals is trivial, so this is really a

2D integral — straightforward numerically.

— A few seconds on a computer with the midpoint
method: Z; f(x;) AX.

One can also approximate the integral

analytically ...



(Dark) matter clustering
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Massage?
Can we massage this expression to get some
Intuition as to what’s going on”?
To begin, we can split the pieces of A; that
are g-independent from those that are g-
dependent [A;=B;+C,(q)] and write

3q

. B d
B RCSEET: I

x ez BTN r—a) 11 4 y(q)]

which is now really a convolution.
We expect non-linearity to “smear” features.

Bharadwaj96; ESWO07; Crocce&Scoccimarro08, Matsubara0s; ...



Splitting the bulk flows ...

Such a split appears natural, and it gives some
insight.

If we Taylor series expand the C pieces in
powers of W (keeping the zero-lag piece
exponentiated) we find

Pk) ~ e F=Pr(k) + -

This type of form has been used extensively to
model baryon acoustic oscillations, it is also the
lowest order piece of the iPT or RPT schemes.

But it does have drawbacks ...



Extensions ...

If all we could compute was the 2-point
function of the matter field in real space this
would be cool, but of limited use.

However ... can also extend this formula to
biased tracers such as halos or galaxies ...

... and to redshift space.

This dramatically increases the range of
problems where this method can teach us
something valuable ...

... and it allows us a new window on some
old problems.



Beyond real-space mass

One of the more impressive features of this approach
is that it can gracefully handle both biased tracers

and redshift space distortions.
In redshift space, in the plane-parallel limit,

z U

v — W+ 7 z=RW

In PT ¥ o« D :>R§;L) = 0ij + nf 2iZ;
I.e. multiply the line-of-sight component by 1+f.

The lowest order terms return the usual Kaiser
expression, the higher order terms give important
modifications to this (since Kaiser’s expression
doesn’t work very well!).



The dark matter ...
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Ok, but ...

« Can we look at galaxies (and QSQOs, and ...)
that live in halos?

* Not ab initio, since the Zel'dovich
approximation won'’t form bound objects like
halos.

* What about if we assume halos are simply
biased tracers of the density field?

— If the bias is local in Lagrangian space this is
totally straightforward ...

— In more complex situations, we have directions we
can explore ...



Beyond real-space mass

For bias local in Lagrangian space:
Jobj(Xx) = /dgq F'[6r(a)] op(x —q— )

* which can be massaged with the same tricks as we
used for the mass.

 If we assume halos/galaxies form at peaks™ of the
initial density field (“peaks bias”) then explicit
expressions for the integrals of F exist. Answers
depend on bias parameters: b,
1 d"
B Vf(V) dsn [Vf(V)]

bn,

*...and assume the peak-background split.



Peaks bias

Final result depends on averages of derivatives of F.

The averages of F' and F” over the density
distribution take the place of “bias” terms

— b, and b, in standard perturbation theory™.

If we assume halos form at the peaks of the initial
density field and use the peak-background split and
assume the Press-Schechter mass function we can

obtain:

2_1 4_32
by = — L obp= b

0
with similar formulae in other cases (e.g. S-T).

*but “renormalized”.



Biased tracers ...

d>q
1+§= / (QW)S/Q‘A‘l/Q

« o~ (1/2)(r—a) AT (r—q)

|:1 _I_b gL — 2b1Uzgz T =5 b fL

— (by + b)) U UG5 — lebggLUigi +

The “bias” we normally think of 1s b=1+b;,.



For (cMASS-like) halos
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What’s up with &,7

* For the mass, we got good agreement with
real- and redshift-space E.

* For the halos, the monopole looks good but
the quadrupole is “off”.

* Three possibilities come to mind:

— The Zel'dovich approximation does less well
around peaks or other specially chosen places”.

— Local Lagrangian bias with the peak-background
split is not a good description of halo bias in N-
body simulations.

— There are other terms, such as tidal shear, that
are important to include.

“this is part of it ...



Simplicity to the rescue ...

* As the Zel'dovich approximation is so simple, it's
possible to extend our bias calculation.

« Can consider an “effective field theory” approach
where we put in all terms consistent with the
symmetries (in a derivative expansion).

* This includes terms which have a “quadrupolar
nature”, like tidal shear:

(s°)°

s ) = (52— 30 ) 9 (55 (a1)3(2))°
(sij(d1)s45(q2))”

(355 (d1)km ¥ (q2))”

)

(sij(d1)d(a2)) (i (A1) km Vim(qz))



Mixed results

|t is possible to get improvements in the
results, but they aren’t dramatic.

* In general these extra terms are quite small.

— Note that the shear terms in Eulerian theory can
be quite large, but those get contributions from the
evolution.

* |t would be interesting to try something very

flexible but systematic ...



What about “‘better gravity”?

* Going to higher order in LPT improves the

quadrupole, but only very slightly.

* At the cost of a lot of work (carison, Reid & White 2013)!

90
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CLPT goes to
second order in

[T~ LPT consistently

with the same
type of
resummation.



Zel’dovich streaming model

* Much of the failure of the Zel'dovich
approximation lies in its prediction of pair-
wise streaming velocities.

* N-body simulations show that for halos, the
PDF of the pairwise velocities is close to
Gaussian.

* What if we set the moments of the Gaussian
using the Zel'dovich approximation, but the
Gaussian form by fiat?

— Zel'dovich streaming model.

see also Reid & White (2011); Wang, Reid & White (2013); ...



Zel’dovich streaming model

0 20 40 60 80 100 120
s [Mpc/h]

[t turns out that going to higher order in LPT for v, gives an excellent fit
to N-body data ... for halos and galaxies ... (LSM)



Beyond the 2-point function?

It is of course possible to go beyond the 2-
point “object” auto-correlation function.

Can go to higher orders, can look at cross-
correlations, can look at non-linear mappings.

Tassev has done the calculation for the 3-
point function of the matter in real space.

An efficient way of doing the calculation for
the 4-point function of halos in redshift-space
Is still waiting to be found ... though we’ve
begun the exploration.

— | can tell you several ways that don’t work!



Conclusions

« The Zel'dovich approximation provides a numerically
accurate, but surprisingly simple, approximation to
large-scale structure statistics.

* Find good agreement for the real-space statistics,
and the angle-averaged redshift-space correlations.

— But not for the dependence on angle to the line-of-
sight where it fails quite noticeably.

Can now test various models for how halo formation is
related to 1nitial conditions, the bias of peaks, the pair-
wise velocity distribution of halos, cross-correlations,
higher-order statistics, ...



The End



Power-law models

« If the Universe had Q=1 (a~t??3, 6~a)

« and the initial power spectrum were a power
law (A2~k3*N)

 then since gravity has no scale (a power-law
potential) the resulting evolution would be

self-similar.
, L 3+n r —3—n .
2= () = a=(5) =B



Standard perturbation theory

« Of course all of the integrals in standard
perturbation theory also become simple
power-laws, e.g.

5 110 7°

A? =a’k |1+ 08 a’k + - -- (n = —2)

« Unfortunately, this predicts a divergent
correlation function (for any r).

 For “resummed” theories such as RPT or iPT
the answer Is zero ...



What about Zeldovich?

* The dispersions are also power laws:

« So our Gaussian integral now becomes
analytically tractable.
— Integrate over x=q-r.

— The “width” of the integration kernel is about the
rms displacement.

— Organize things as a power series in this
displacement divided by r, i.e. |x|<<]|r].
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What’s different?

In the Zeldovich approximation, what matters
Is the rms displacement between two points

initially separated by q.

In RPT, IPT or other schemes what matters is
the rms displacement at a single point (which
IS g independent: X).

For many power-law models the former is
finite while the latter is not!

While the power-law models are extreme in
this sense, they point to a very important
point about “splitting” bulk flows.

see also Tassev & Zaldarriaga




