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Outline

Large-scale structure is one of our premier laboratories for
fundamental physics, cosmology and astrophysics.

I Growth of structure: RSD

I The streaming model and Lagrangian PT.

I The failure of PT and EFT.
I Including bias.

I EFT & the connection to the ‘peaks formalism’.
I Euler vs. Lagrange

I Conclusions



Growth of structure

I For a fixed expansion history/contents, GR makes a unique
prediction for the growth of structure (and the velocity field).

I This prediction is at the percent level – allowing percent level
tests of paradigm (in principle!).

I Growth is a competition between expansion and gravity.
I In an expanding Universe collapse is slower than the usual

Jeans instability – power-law not exponential – so we retain
some memory of ICs.

I Growth of structure could help distinguish DE/MG models.
I Also helps break some DE degeneracies ...

I Do we understand how large-scale structure forms?



Redshift-space distortions: RSD

Growth of structure measured using redshift-space distortions

I zobs = Hr + v lospec.

I vpec sourced by gravity, which is sourced by
densities!

I Since δ = ρ/ρ̄− 1 grows by inflow of
material, shifting by vpec is like “looking into
the future”, but only in the line-of-sight
direction!

I Comparison of clustering along and across
the line-of-sight is a measure of growth rate.

Line of sight

We constrain dδ/d ln a ∼ (d ln δ/d ln a)δ ∼ f σ8 by measuring the
anisotropy in the clustering.



The 2D correlation function

In cosmology we frequently work in Fourier space. Today I will
take a mostly configuration space approach.

Plotting the counts of pairs of
objects, “above random”, in bins
of separation across and along
the line-of-sight gives the 2D
correlation function.
It is very smooth in angle –
usually integrate over angle to
get the multipole moments: ξ`.
It is the lowest order moments
which are of interest.



Modeling RSD

Kaiser taught us how to model RSD on large scales, showing that

within linear theory ξ
(s)
0 ∝ ξ(r), ξ

(s)
2 and ξ

(s)
4 are integrals of ξ(r).

Unfortunately linear theory is not very accurate!

0 20 40 60 80 100 120

s  [h−1Mpc]

0

10

20

30

40

50

60
i`
s

2
ξ `

(s
) 

 [
h
−

1
M

p
c]

2

`= 0

`= 2

Comparison of N-body and linear theory at z = 0.5



Fingers of God

Perturbative non-linearity is not the only thing we need to worry
about. Virial motions within collapsed objects also contribute to

our signal – suppressing ξ2 at small scales.
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Growth-geometry degeneracy

Anisotropies induced by changes in the growth rate can be
mistaken for anisotropies induced by having the wrong model to

convert θ and z to (R,Z ).

This partial degeneracy can be broken with a long enough lever
arm. But this means we want to fit over a wide range of scales ...



What we want in our theory ...

I Needs to work over a wide range of scales.

I Fingers of God need to be included.
I Go beyond linear perturbation theory

I For the monopole, ξ0, near the BAO peak.
I For the quadrupole, ξ2, on essentially all scales.

I Need to be able to handle biased tracers in a flexible and
natural manner.

I For RSD part of the difficulty is that we are dealing with two
forms of “non-smallness”.

I The density and velocity field are non-linear.
I The mapping from real- to redshift-space is “non-small”
I These two forms of correction interact (and can partially

cancel) and depend on parameters differently.
I ‘Simple’ PT doesn’t work ...



Perturbation theory

I This problem is in principle amenable to direct simulation.
I Though the combination of volume, mass and force resolution

and numerical accuracy is actually extremely demanding –
especially for next gen. surveys.

I PT guides what range of k , Mh, etc. scales are necessary and
what statistics need to be best converged.

I N-body can be used to test PT for ‘fiducial’ models.

I However PT can be used to search a large parameter space
efficiently, and find what kinds of effects are most important.

I And can be much more flexible/inclusive, especially for biasing
schemes, ...

I Hopefully we gain insight, not just numbers!

I Our goal is to do highly precise computations at large scales,
in preparation for next gen. surveys, not to push to very small
scales.



Streaming model: I

Displacements due to the velocity field are not “small”, and we
want to treat them non-perturbatively (as far as we can).

One approach is to use a “streaming model”.

I Recall that a shift in configuration space corresponds to a
phase in Fourier space.

I To compute the redshift-space power spectrum we thus need
to consider an object like

1 +M =
〈

[1 + δ1] [1 + δ2] e ···(u1‖−u2‖)
〉

I Expand ln [1 +M] in powers of ∆ui = ui1 − ui2 (the cumulant
expansion for 〈ex〉 in terms of 〈xn〉).



Streaming model: II

Keeping only cumulants up to second order:

C = ln [1 + ξ]

C i =
〈(1 + δ)(1 + δ′)∆ui 〉

1 + ξ
≡ v i12

C ij =
〈(1 + δ)(1 + δ′)∆ui∆uj〉

1 + ξ
− v i12v

j
12 ≡ σ

ij
12

and doing the Fourier transform gives the Gaussian streaming
model:

1 + ξs(s⊥, s‖) =

∫
dy√

2π σ12

[1 + ξ] exp

{
−

[s‖ − y − µv12]2

2σ2
12

}



Streaming model: III

I This expression has a very
simple interpretation in
terms of the conservation of
pairs.

I Pairs at s‖ come from pairs
at “true” separation y which
have v‖ such that
s‖ = y + v‖.

v

y

s

s

1 + ξs =

∫
dy [1 + ξ]P

(
v‖ = s‖ − y |r

)
With the “Gaussian streaming model” having P be a Gaussian.



Streaming model: IV

I The Gaussian streaming model works very well for describing
the clustering of halos in simulations.

I Higher order cumulants small correction on 10s Mpc scales.

I To complete the model we need predictions for ξ, v12 and σ2
12.

I We turn to (Lagrangian) peturbation theory
I Introduced by Zeldovich in the 1970’s and developed in the

late 80’s and early 90’s.
I Lagrangian PT is experiencing a resurgence.
I Easily handles RSD and bias (Matsubara).
I Has been a focus of my group for the last ∼ 3 years.



Lagrangian perturbation theory I

I Consider fluid elements (or DM particles) which start at q and
move to x = q + Ψ(q), with Ψ̈ + 2HΨ̇ = −∇Φ(x)

I Expand Ψ as a power series in linear δ:

Ψ
(n)
i (k) =

∫ n∏
i=1

d3ki
(2π)3

(2π)3δ(D)
(

k−
∑

ki

)
L

(n)
i

n terms︷ ︸︸ ︷
δ(k1) · · · δ(kn)

with L
(n)
i (k; k1, · · · , kn) a mode-coupling kernel (just ratios of

dot products of ki ).

I The density field is given from Ψ(q) as

1 + δLPT (x) =

∫
dq δ(D) [x − q −Ψ(q)]

δLPT (k) =

∫
dq e−ikq

[
e−ikΨ(q) − 1

]



Lagrangian perturbation theory II

I The L
(n)
i can be derived, to arbitrary order, from the equations

of motion.

I Products of δ(k)s can be computed as expectation values of
exponentials, with each term a product of Gaussian fields.

I Example: The Zeldovich approximation (1st order LPT):
I Consider computing PZ (k) = 〈|δZ |2〉, with each δZ (k) an

integral of exp[ikΨ(q)] and Ψ = (ik/k2) δ a Gaussian.
I For a zero mean Gaussian, x , the “cumulant expansion”:

〈ex〉 = e−〈x
2〉/2 (complete the square)

so in the Zeldovich approximation we have

PZ (k) =

∫
dq e−ikq

[
e−k

2σ2(q)/2 − 1
]

where σ2 is the displacement 2-point function,
〈
Ψ2
〉
.

I Higher order proceeds analogously ...



Limitations of PT

But is PT right? Well no, not really, ...

I Looking at PT for “perfect” sheets moving in 1D proves very
instructive!

I Zeldovich approximation is “exact” (up to sheet crossing).

I The LPT and SPT solutions are identical to all orders, even
though they describe different systems after shell crossing.

I A perfectly cold, pressureless fluid vs. a collection of
non-interacting particles/sheets.

I Both perturbation theories converge smoothly to a
well-defined solution.

I That solution is wrong! (c.f. N-body)

I Obviously any resummation scheme based purely in
perturbation theory cannot cure this problem.



Effective field theory

Traditional perturbation theory treats all scales as if they were
perturbative and the matter field as a perfect fluid.

I Use “effective field theory” to parameterize our ignorance.

I EFT has a long history in other areas of physics (but beware
there are significant differences with e.g. particle physics!).

I Basic idea is to write the equations in terms of
long-wavelength fields with no small-scale fields explicitly
involved (“integrated out”).

I The effects of these small-scale fields then show up as
additional terms in the equations of motion.

I Trivial example: smoothing ρv isn’t the same as multiplying
smooth ρ by smooth v . Put difference on rhs of eom.

I ˙̃ρ+∇ · [ρ̃ṽ ] = Q (= −∇ · [ρ̃v − ρ̃ṽ ])



Procedure

I All we know about these terms is that they must obey the
symmetries of the theory.

I We need to make some approximations to make progress.

I Assume we can expand the “extra terms” in derivatives
(powers of k) and powers of δ with unknown coefficients.

I Then integrate these source terms against the known Green’s
function for the perturbative solution.

I It’s easy to show that the additional terms asymptotically
cancel any cutoff dependence in the theory.

I However for reasonable k and (cutoff) Λ the final answers
depend on Λ if we keep only lowest order.

I Typically we take the limit Λ→∞.
I This is the limit we were trying to avoid, but hope that

EFTLSS is less sensitive to this limit than SPT.



Lagrangian EFT

I EFT for Lagrangian PT follows the same logic as Eulerian PT.

I What “extra” terms contribute to Ψ?

I You can treat this as a theory of extended objects, or you can
simply ask

What term, constructed from a derivative of terms linear
in δ, transforms under rotations as a vector?

I The answer, to lowest order, is trivially ∇δ, so:

Ψ = Ψ(1) + Ψ(2) + Ψ(3) + · · ·+ α∇δ +∇J

with α a free parameter and J a ‘stochastic’ term,
uncorrelated with δ.

I Now can proceed as before, ...



Bias, peaks and EFT

I To make contact with galaxies, QSOs, 21 cm, Lyα, etc. we
need to include bias.

I In many ways, having a good model for bias is more important
than dealing carefully with the non-linearities – even on large
scales.

I Even ‘small’ terms become important for next gen. surveys!
I EFT: the “cut off” for bias can be at lower k than for

non-linearities so at fixed k � kcut need higher powers in
k/kcut for same accuracy.

I Peaks: the Lagrangian radius (R) of a massive halo can be
larger than the non-linear scale, so at fixed k � R−1 need to
include higher powers in kR for the same accuracy.

I We can start to model things like assembly bias.

I This bias can be generalized and ‘renormalized’.



Flexible bias model important even on large scales

I Symmetry arguments (EFT) are even more powerful for bias
that non-linear gravity, since we really don’t understand the
small-scale physics of bias.

I However, flexibility comes with a huge cost in number of
parameters, and associated degeneracy issues.

I Physical models (e.g. galaxies form from peaks in the initial
density field) can provide priors.

I Lagrangian formalism has advantages over Eulerian.
I Naturally includes effects due to bulk motion.
I Easier to connect to N-body sims.
I If BBKS were perfect, would have no tidal tensor bias and k2

terms would arise only due to peak constraint.



The GSM + LEFT
Now we compute the 3 ingredients of the GSM within Lagrangian
effective field theory, including biased tracers. Everything reduces
to Gaussian integrals of integrals of PL(k), e.g.

1 + ξ(r) =

∫
d3q M0(~r , ~q) .

with

M0 =
1

(2π)3/2|Alin|1/2
e−(1/2)(qi−ri )(A−1

lin )ij (qj−rj )

×
{

1− 1

2
GijA

1−loop
ij + b2

1ξL +
1

2
b2

2ξ
2
L − 2b1Uigi +

1

6
WijkΓijk

−[b2 + b2
1]U

(1)
i U

(1)
j Gij − b2

1U
11
i gi − b2U

20
i gi

−2b1b2ξLU
(1)
i gi − b1A

10
ij Gij −

1

2
αξtrG + b∇2B + b2bs2χ12

−bs2

(
GijΥij + 2giV

10
i

)
+ b2

s2ζ − 2b1bs2giV
12
i + · · ·

}
.



The GSM + LEFT

Each of the terms can be expressed as simple integrals over PL(k),
e.g.

V 10
i =

〈
s2(q1)Ψ

(2)
i (q2)

〉
c

= −2 q̂i
7

∫
k dk

2π2
Qs2(k) j1(kq)

with

Qs2(k) =
k3

4π2

∫
dr PL(kr)

∫
dx PL(k

√
y)Qs2(r , x)

where y = 1 + r2 − 2rx and

Qs2(r , x) =
r2(x2 − 1)(1− 2r2 + 4rx − 3x2)

y2

There are similar expressions for each of the other terms in M0,
and similar expressions for v12 and σ2

ij .



Model works well

Comparing real-space ξ and mean (infall) velocity (v12) in the
model to 256 h−3Gpc3 of high-resolution N-body simulations.
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Similar agreement in velocity dispersion on “large” scales –
currently limited by the accuracy of N-body simulations!



Future surveys sensitive to small terms
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Tests underway ...

I Preliminary indications are very promising.

I We are still refining the model and testing for degeneracies.

I The goal is a percent-level accurate, and highly flexible, model
for the 2-point statistics in both configuration and Fourier
space (and possibly hybrids).

I An LPT-based model already exists for fitting
post-reconstruction BAO.

Working towards a fully Lagrangian framework for interpreting
next-generation redshift-survey data, with a consistent set of

parameters and assumptions.



Conclusions

I Large redshift surveys can be used to make precision tests of
the ΛCDM model.

I Expansion history (BAO)
I Growth of structure (RSD)
I Many other things ...

I Analytic models can shed light on the relevant physics and we
hope they can be made accurate enough to fit next-generation
data (on large scales).

I Modeling BAO+RSD requires beyond-linear modeling.

I Lagrangian perturbation theory (LPT) is a natural language
for building such models.

I Need to go beyond straight perturbation theory and need to
go beyond simple bias models.

I We are close to having a fully Lagrangian framework for
interpreting next-generation redshift-survey data.



.

The End!



Gaussian Ansatz for P

The distribution of velocity differences (converted to distance
offsets) for pairs of halos separated by 30 h−1Mpc.



Test of the GSM
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Accuracy currently limited by systematics in the N-body
simulations!!



Convergence of perturbation theory

I We can compute any order in PT using a simple (1D) Fourier
transform.

I It is easy to look at
I convergence of PT (yes, it converges!)
I common resummation schemes
I asymptotics

I How does PT do in this simple 1D case?



Convergence of perturbation theory
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Summary

I The LPT and SPT solutions are identical to all orders, even
though they describe different systems after shell crossing.

I A perfectly cold, pressureless fluid vs. a collection of
non-interacting particles/sheets.

I The perturbation theory converges smoothly to a well-defined
solution.

I That solution is wrong!

I Obviously any resummation scheme based purely in
perturbation theory cannot cure this problem.


