The mystery figure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Cosmic Web, IGM tomography and Clamato

Martin White

with K-G Lee, J. Hennawi, E. Kitanidis, P. Nugent, J. Prochaska, D. Schlegel, M.Schmittfull, C. Stark, et al.

http://clamato.lbl.gov

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Beyond power spectra ...

Give a cosmologist a map and they will reflexively take it's Fourier transform then throw away the phases ...

Hi, Dr. Elizabeth? Yeah, vh... I accidentally took the Fourier transform of my cat... Meow

xkcd.com/26

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cosmic web

- Sometimes you want a map!
- A natural outcome of gravitational instability from Gaussian ICs is a beaded filamentary network of voids, sheets, filaments and knots known as the cosmic web.
- All of galaxy and structure formation occurs in this context!
- Can we make a map of the large-scale structure with Mpc resolution over a representative volume of the Universe (10⁶ h⁻³Mpc) with existing telescopes ... at z > 2?
- It's hard with galaxies, but ...

Ly α forest tomography

If we take a spectrum of a background source, neutral H along the line of sight imprints (absorption) features: Ly α forest.

▲ロト▲圖ト▲画ト▲画ト 画 のべつ

Ly α forest tomography

With the Ly α forest we get the line-of-sight sampling "for free", so we just need to get the transverse sampling high enough.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Source luminosity functions

To increase the sightline density we need to go beyond QSOs as backlights. Beyond $g \sim 22 - 23$ LBGs dominate over QSOs.

Exponential increase in sightline density beyond $g \simeq 23!$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Requirements?

- By g ≃ 24 sources (galaxies) are separated by arcmin on the sky! Can get S/N~few per Å with 3 hr integrations on Keck / LRIS-B.
- BOSS taught us that you can get a lot of information from low resolution spectra with low S/N – if you have a lot of them!
 - We're closer to measuring a "mean absorption" than individual absorption features.

Moderate resolution and S/N means that what looks like 30 m class science can be done (now!) with a 10 m!

What can you do with $\mathcal{O}(10^3)$ sightlines per deg² at $S/N \sim$ few per Å?

Science with IGM tomography

- Finding protoclusters and (high z) voids.
 - Stark et al. (2015a,b) study the counts, profiles, radii, etc. of z ~ 2.5 protoclusters and voids as seen in Lyα tomography.
 - Find high completeness (> 75%) and purity (> 90%) for massive cluster progenitors.
 - Similarly good completeness and purity for large voids.
- Improving photo zs.
 - Low density regions occupy most of the volume of the Universe, but host essentially no massive halos (or galaxies).
 - Schmittfull & White (2016) show can improve photo zs for massive galaxies.
- Cosmic web classification
 - One can use a deformation tensor approach to characterize the cosmic web.
 - Lee & White (2016) show, in simulations, comparable performance at $z \simeq 2.5$ to GAMA, using the same method, at $z \simeq 0.25$.
- ... and some other stuff ...

CLAMATO

COSMOS Ly-Alpha Mapping And TOmography

- Survey to do Ly α forest tomography in the central $1 \deg^2$ of the COSMOS field.
 - Overlaps CANDELS/3D-HST. Allows study of colors, morphology, SF rate, AGN activity, etc., as a function of large-scale environment.
 - Survey for protoclusters and voids.
 - Improved photo-z for galaxies in COSMOS.
 - Cosmic web classification.
 - Study CGM in protocluster foregrounds.
 - Cross-correlations and small-scale Ly α forest.
- ► Need 1 deg² in order to sample large structures, like protoclusters and voids.
- Goal: $(60 \ h^{-1} \mathrm{Mpc})^2 \times 300 \ h^{-1} \mathrm{Mpc} \sim 10^6 \ h^{-3} \mathrm{Mpc}^3$.

- Survey in progress …
 - Currently have 124 sightlines.
 - Mean separation $2.5 h^{-1}$ Mpc.
 - Lee et al. (2014ab, 2016)

Context and scales

Conveniently 1' and 1 Å are (about) a comoving Mpc at $z\simeq 2.5$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

CLAMATO: Current status

Contours of the flux (overdensities are more blue) in our current data set ($18 \times 24 \times 340 \ h^{-1}$ Mpc). Slices are placed at the redshifts of previously known proto-clusters.

Joint fitting & Sampling

We have implemented a high-dimensional minimization and sampling scheme that allows us to generate (Gaussian) initial conditions which (when evolved and turned into Ly α flux) are consistent with the observed data and noise model.

We can use these to run constrained N-body simulations, jointly fit $Ly\alpha$ and galaxy data sets, and propagate errors consistently.

Conclusions

- ► IGM tomography is 'ideal' for measuring large-scale environments of galaxies and QSOs.
- Can find large, coherent objects spanning Mpc
 - Protoclusters
 - Voids
- ► Map LSS and decompose into filaments, sheets and halos.
- Improve photo-zs of galaxies using topology.
- Medium scale 3D Ly α clustering.
- Cross-correlations.

Clamato is underway, and so far things look good ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References and links

- Observational papers
 - Lee et al. (2014b; ApJ, 795, L12)
 - Lee et al. (2016a; ApJ, 817, 160)
 - Lee et al. (2016b; in prep.)
- Theory/Simulation papers
 - Lee et al. (2014a; ApJ, 788, 49)
 - Stark et al. (2015a; MNRAS, 453, 311)
 - Stark et al. (2015b; MNRAS, 453, 4311)
 - Lee & White (2016; ApJ, in press)
 - Schmittfull & White (2016; MNRAS, in press)
- Mock data sets and code
 - http://clamato.lbl.gov
- Movies and 3D visualizations
 - Video of 2015 map: https://youtu.be/KeW1UJOPMYI
 - 3D/Cardboard video of 2016 map: https://youtu.be/xV2Ng8n61Xc

The End!

.

Backup Slides

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

.

Technical details

- Program on Keck-I/LRIS-B ($4' \times 7'$ FOV)
- ► Covers central 0.8 deg² in 90 pointings.
- Nominal limit g = 24.5 (about 25 per mask) with 3 hr exposures.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Yields 10 − 15 targets with proper z and S/N for reconstructing the 2.2 < z < 2.5 Lyα forest.</p>

Physics of the forest

- The physics of the forest is relatively straightforward.
- Gas making up the IGM is in photo-ionization equilibrium with a (uniform?) ionization field which results in a tight ρT relation for the absorbing material.
- The neutral H density is proportional to a power of ρ_B .
- Since pressure forces are subdominant on "large" scales, the gas traces the DM.
- The structure in the spectrum traces, in a calculable way, the fluctuations in the density along the line of sight.
- Ab initio calculations of the forest perform quite well compared to observations.

e.g. Meiksin (2009)

Protocluster finding

Stark et al. (2015a)

Completeness and purity

- Stark et al. (2015a, 2015b) study the counts, profiles, radii, etc. of z ~ 2.5 protoclusters and voids as seen in Lyα tomography.
- ▶ Find high completeness (> 75%) and purity (> 90%) for tomographically selected samples of massive $(> 3 \times 10^{14} h^{-1} M_{\odot})$ cluster progenitors for sightline separations at or better than $4 h^{-1}$ Mpc.
- Even sightline separations above 10 h⁻¹Mpc can be used to find the largest, earliest assembling protoclusters.
- Find similarly good completeness and purity for voids with radii > 6 h^{-1} Mpc (~ 10² such voids per 1 deg² at z = 2.5).

Protocluster Properties

9

 $M(z=0) (h^{-1}M_{\odot})$

3

Э

Protocluster Completeness and Purity

Void finding

It is also possible to find large <u>under</u>densities – in fact this is somewhat easier since voids aren't really empty, just underdense in galaxies (dots in left panel).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Stark et al. (2015b)

Voids at high z

Voids counts at z = 2.5

Synergistic with JWST-NIRSPEC to study sub- L_{\star} void galaxies at $z \simeq 2 - 3$.

Protocluster Candidate: z = 2.44

Diener et al. (2015; LBG) and Chiang et al. (2015; LAE).

Lee et al. (2016): See a large overdensity in our absorption map at high significance, correlated with LBG and LAE overdensities. Comparison with sims gives $M(z = 0) \simeq (3 \pm 1.5) \times 10^{14} h^{-1}$ Mpc (Virgo). Possible fragmentation into two $z \simeq 0$ clusters.

Protocluster Candidate: z = 2.47

Casey et al. (2015), Hershel sub-mm overdensity (also seen in LBGs).

Protocluster Candidate: z = 2.51

X-ray detected (proto-)cluster: Wang et al. (2016)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Improving photo-zs

Low density regions occupy most of the volume of the Universe, but host essentially no massive halos (or galaxies). Knowledge of the density field can improve photo-*zs*!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Cosmic web classification

- One can use a deformation tensor approach to characterize the cosmic web.
 - Compute $T_{ij}(\mathbf{k}) = (k_i k_j / k^2) \delta_F(\mathbf{k})$
 - Solve for e-values, λ_k, count number less than a given threshold, λ_{th}.
- For achievable resolution and S/N we can classify 70% of the volume correctly compared to the DM, and 99% within 1 eigenvalue.
- ► Our performane at z ≃ 2.5 is comparable to the performance of GAMA, using the same method, at z ≃ 0.25.

Cosmic web classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cosmic web classification

Halo multiplicity function and (normalized) distribution of overdensities (in $1 h^{-3}$ Mpc³ voxels) classified by cosmic web component.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ