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I Lightening review of CMB lensing

I Cross correlation opportunities

I Cross correlation challenges

I Bias, bias, bias ...

I Future directions



Lensing of the CMB

I The anisotropies we see in the CMB are the seeds of
large-scale structure in the Universe.

I General Relativity makes precise predictions for the growth of
this large-scale structure once the constituents are known.

I The gravitational potentials associated with this structure lens
the CMB photons on their way to us ...

I ... imprinting a characteristic pattern which can be used to
probe the structure itself.

I This provides an important consistency check and sensitivity
to the low redshift Universe.



Characteristic scales

The lensing-induced deflections of CMB photons

I are O(2′ − 3′) in size

I are coherent over 2◦ − 3◦

I arise from structures over a wide redshift range ...

I ... but are most sensitive to z ∼ 2− 3.

The CMB is 14 Gpc away.
δΦ nearly scale invariant on large scales, damped below hori-
zon size at equality (∼ 300 Mpc).
There are ∼ 14000/300 ∼ 50 lenses along the line of sight,
each with δΦ ∼ 3 × 10−5 or deflection α ∼ 10−4 so
αtot ∼ 501/2 × 10−4 ∼ 2′.
Half-way to the surface of last scattering 300 Mpc subtends
300/7000 ∼ 2◦.



Measuring lensing from the CMB

I CMB fluctuations have a
characteristic scale.

I Lensing “reconstruction”
finds κ by measuring a local
stretching of the power
spectrum.

I Magnified regions shift
power to larger scales
(smaller `).

I Demagnified regions shift
power to smaller scales
(higher `).



Planck lensing map



Coming of age

Planck was definitely not the first experiment to

I to measure lensing,

I ... by large scale structure,

I ... of the CMB

however it was the first experiment to measure CMB lensing by
large scale structure over a significant fraction of the sky and with
enough signal to noise that it provided a sharp test of the theory
and could drive fits.

In some sense Planck was a “coming of age” for CMB lensing, and
a taste of things to come – much of the science from future CMB
surveys will come from lensing.



The landscape

A natural “by-product” of next generation CMB experiments to
constrain primordial gravitational waves is high fidelity CMB
lensing maps.

I CMB lensing is sensitive to the matter field and to the
space-space metric perturbation, over a broad redshift range.

I CMB lensing has radically different systematics than cosmic
shear (and measures† κ, not γ).

I CMB redshift is very well known (but can’t change it)!

I CMB lensing surveys tend to have large fsky, but relatively
poor resolution.

I The lensing kernel peaks at z ∼ 2− 3 and has power to
z � 1, where galaxy lensing becomes increasingly difficult.

I The CMB is behind “everything” ... but projection is a big
issue.



Optical surveys

We will also have major new imaging and spectroscopic facilities ...

I Dark Energy Survey (DES)

I DECam Legacy Survey (DECaLS)

I Dark Energy Spectroscopic Instrument (DESI)

I Subaru Hyper Suprime-Cam (HSC)

I Large Synoptic Survey Telescope (LSST)

I Euclid

I Wide-Field Infrared Survey Telescope (WFIRST)

These facilities can map large areas of sky to unprecedented depths!



The opportunity

The combination can be “more than the sum of its parts”.

Lensing + (biased) tracers of LSS offers redshift specificity and
higher S/N.

A new generation of deep imaging surveys and CMB experiments
offers the possibility of using cross-correlations to

I test General Relativity

I probe the galaxy-halo connection

I measure the growth of large-scale structure

As we motivate and design these surveys, it is interesting to ask
what we could learn, how we could learn it and how we would
model the data they will (may?) return.



Example: the current status
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Bianchini et al. (2015).



The promise

The improvements will be dramatic!

I DES, DECaLS, HSC, LSST, Euclid and WFIRST will measure
positions of 108 galaxies.

I Maps of the lensing convergence will go from being noise
dominated above ` ∼ 102 to noise dominated only above
` ∼ 103 an increase of two orders of magnitude in the
number of high signal-to-noise modes!

Improvements in data require concurrent improvements in the
theoretical modeling in order to reap the promised science.

What is the right framework for analyzing such data?



The future is bright
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The approach
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I Much of the information
available from combining
galaxy and CMB surveys lies
at high z and low k .

I This is the regime where PT
excels!

I Less sensitive overall, but
also less sensitive to
baryonic effects, galaxy
formation physics, etc.

Extend the highly successful linear perturbation theory analysis of
primary CMB anisotropies which has proven so impactful!

[Formalism in PT similar to CMB lensing formalism]



Projected fields

I Define projected, 2D, fields

δ2D(n̂) =

∫
dχW (χ) δ3D(χn̂)

with χ the line-of-sight distance.

I Multipole expansion of the (angular) cross-power spectrum is

CAB
` =

∫
dχ

W A(χ)W B(χ)

χ2
PAB

(
K =

`+ 1/2

χ
, kz = 0

)
I Our case has

W κ(χ) =
3

2
ΩmH

2
0 (1+z)

χ(χ? − χ)

χ?
, W g (χ) ∝ H(z)

dN

dz
+· · ·

with χ? the (comoving) distance to last scattering and∫
W gdχ = 1.



Thin slice

In the limit the tracers (e.g. galaxies) lie in a thin shell of width
∆χ centered at χg with k−1 � ∆χ� χg

Cκg` ≈
3

2
ΩmH

2
0 (1 + z)

(χ? − χg )

χ?χg
Pκg

(
k =

`+ 1/2

χg

)
and

C gg
` ≈

Pgg (k = [`+ 1/2]/χg )

χ2∆χ



Example: Measuring Pmm(k , z)

I A proper accounting of the growth of large scale structure
through time is one of the main goals of observational
cosmology.

I A key quantity in this program is Pmm(k, z).

I Schematically we can measure Pmm(k, z) by picking galaxies
at z and

Pmm(k) ∼ [bPmm(k)]2

b2Pmm(k)
∼ [Pmh(k)]2

Phh(k)
∼

[
Cκg`=kχ

]2
C gg
`=kχ

I Operationally we perform a joint fit to the combined data set.
I With only the auto-spectrum there is a strong degeneracy

between the amplitude (σ8) and the bias parameters (b).
I However the matter-halo cross-spectrum has a different

dependence on these parameters and this allows us to break
the degeneracy and measure σ8 (and b).



Need a model

Thus we need a model which can predict the auto- and
cross-spectra of biased tracers at large and intermediate scales.

I Even though we are at high z and “large” scales it turns out
that linear perturbation theory isn’t good enough.

I Need to include non-linear corrections – and as soon as you
do that you need to worry about scale-dependent bias,
stochasticity and a whole host of other evils.



“Standard” model

I The most widely used model to date is based on the
HaloFit fitting function for Pmm(k) (auto-magically
computed by CAMB and CLASS).

I Most analysis assume scale-independent bias (but this is
barely sufficient even “now”).

I One extension, motivated by peaks theory, is to use
b(k) = bE10 + bE11k

2.

I We will find we need to augment this with a
phenomenological k term

Pmh(k) =
[
bE10 + bE

1 1
2
k + bE11k

2
]
PHF (k)

Phh(k) =
[
bE10 + bE

1 1
2
k + bE11k

2
]2

PHF (k)

Note the assumption that Phh/Pmh = b(k)!



CLEFT model

(Large scales, high z , it sounds like a job for ...)

The Lagrangian PT framework we have been developing for many
years naturally handles auto- and cross-correlations in real and
redshift space for Fourier or configuration space statistics. For
example:

Pmg (k) =

(
1− α× k

2

2

)
PZ + P1−loop +

b1
2
Pb1 +

b2
2
Pb2 + · · ·

where PZ and P1−loop are the Zeldovich and 1-loop matter terms,
the bi are Lagrangian bias parameters for the biased tracer, α× is a
free parameter which accounts for small-scale physics not modeled
by PT.



Lowest order I

Ptree = 4π

∫
q2 dq e−(1/2)k

2(XL+YL)

{
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1 + b21
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)
− b2

(
k2U2

L

)
+

b22
2
ξ2L

]
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+
∞∑
n=1

[
1− 2b1

q UL
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(
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[
2n
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]
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)
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}
For cross-correlations: b1 → 1

2

(
bA1 + bB1

)
, b21 → bA1 b

B
1 , etc.



Lowest order II

Where

ξL(q) =
1

2π2

∫ ∞
0

dk PL(k)
[
k2 j0(kq)

]
XL(q) =

1

2π2

∫ ∞
0

dk PL(k)

[
2

3
− 2

j1(kq)

kq

]
YL(q) =

1

2π2

∫ ∞
0

dk PL(k)

[
−2j0(kq) + 6

j1(kq)

kq

]
UL(q) =

1

2π2

∫ ∞
0

dk PL(k) [−k j1(kq)]

The integrals over q can be done efficiently using fast Fourier
transforms or other methods.
The full expressions contain “1-loop” terms which are integrals of
P2
L .



The bias model

I The bi represent (Lagrangian) bias parameters.

I They describe how halos, galaxies, QSOs, etc. trace the
matter field.

I For the matter bi ≡ 0 for all i .

I The large scale, linear bias is 1 + b1.

I Non-linearities in the bias relation have b2 6= 0.

I One can systematically extend this bias expansion, but we will
need only b1 and b2 for now.

Note: the fact that our expressions have terms non-linear in the bi
suggests that b(k) for Pgg and Pmg are different!

Pgg 3 bg1 b
g
1 ξL , Pmg 3 bm1 bg1 ξL ≡ 0



Peak-background split

If halos form from peaks of the initial density field ...

Within the peak-background split for the Press-Schechter mass
function the first two bias parameters are related to the peak
height, ν, and the critical density for collapse, δc , by

b1 =
ν2 − 1

δc
, b2 =

ν4 − 3ν2

δ2c

Note that b2 → b21 as b1 →∞, so the scale-dependence of the bias
is predicted to become more pronounced as the bias increases.

At fixed halo mass, bi increase to higher z .
At fixed z , bi increase to higher halo mass.



Scale-dependent bias
In detail P-S isn’t right, but ...
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Note the bias is scale-dependent, and the scale dependence is
different for the auto- and cross-spectra.



Comparison with N-body
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Comparison with N-body
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Model fit

I Consider a future experiment, motivated by LSST and
CMB-S4.

I Imagine cross-correlating the CMB lensing map with the (gold
sample) galaxies in a slice ∆z = 0.5 at z = 1, 2 and 3.

I ilim = 25.3.
I θb = 1.5′, ∆T = 1µK-arcmin.

I Compare two ‘models’:
I HaloFit with b(k) = bE10 + bE

1 1
2

k + bE11 k
2.

I Perturbation theory with b1, b2 (and αi ).

I Concentrate on just measuring an amplitude of matter
clustering, σ8.

I Jointly fit Cκg` and C gg
` ...



Model fit
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Model fit

The likelihoods hide a lot of information about how the fit is
performing. If we look at the best fit models:
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Model fit

I Part of the issue with HaloFit is with the fit to Pmm, much
of it is with the b(k) assumption.

I At high z , modeling bias is at least as important as modeling
non-linear structure formation.

I In the EFT language: kNL shifts to higher k at higher z , but
the scale associated with halo formation (the Lagrangian
radius) remains constant for fixed halo mass.

I In general there is a “sweet spot”, where b is not too scale
dependent but non-linearity is not too pronounced.

I How bij(k) depends upon complex tracer selection is unknown.



Knowing dN/dz

We can use the Fisher forecasting formalism to investigate where
the signal is coming from, degeneracies, and biases.
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Can work at relatively low `, but need to know dN/dz well.



Future directions

I Go to 2-loop, so we can work to lower z and higher `.

I Add mν > 0 or MG, vbc , ...

I Inclusion of baryonic effects using EFT techniques.

I Look at non-Gaussianity from inflation (low `).

I Combining 3D surveys with 2D surveys. More modes to a
fixed `, but more difficult to model.

I Clean low z

Cκκ` (> zmin) =
∑
z

Cκκ`,z
(
1− ρ2z

)
Can model Cκκ` (> zmin) and the decorrelations using PT.

I Simultaneously fitting dN/dz and σ8 using clustering
redshifts.

I Multi-tracer techniques.



Conclusions

I We are on the cusp of a dramatic increase in the quality and
quantity of both CMB and imaging data.

I The combination of CMB and galaxy data can be more than
the sum of its parts.

I As always, better data requires “better” modeling.
I With primary anisotropies, linear theory is 99% of the story.
I At lower redshift this is no longer the case.

I We need to model both non-linear matter clustering and
better bias.

I Fitting functions for Pmm are good to O(5− 15%), but the
error bars will be smaller than this.

I Once b is not a constant, bhh 6= bmh.

I The combination of high redshift and “large” scales makes
this an attractive problem for analytic/perturbative attack.



.

The End!



Noise model I

The noise in our measurements goes as

Var
[
Cκg`

]
=

1

(2`+ 1)fsky

{
(Cκκ` + Nκκ

` )
(
C gg
` + Ngg

`

)
+
(
Cκg`

)2}
where fsky is the sky fraction, C ii

` represent the signal and N ii
` the

noise in the auto-spectra.
Similarly

Var
[
C gg
`

]
=

2

(2`+ 1)fsky

(
C gg
` + Ngg

`

)2
At low ` we are sample variance limited, and at high ` we are noise

limited. For future experiments the transition will be ` ∼ 103.



Noise model II

For the galaxies the noise is simply shot-noise: Ngg
` = 1/n̄

For the lensing we approximate the noise as

Nκκ
L =

[
`(`+ 1)

2

]2 ∫ d2`

(2π)2

∑
(XY )

KXY (~̀, ~L)

−1

with e.g.

KEB(`, L) =
[(~L− ~̀) · ~LCB

`−L + ~̀ · ~LCE
` ]2

C tot,E
` C tot,B

`−L
sin2(2φ`)

and similar expressions for TT , TE and EE .



Effective redshift

I It is often the case that we wish to interpret the C`, which
involve integrals across cosmic time, as measurements of the
clustering strength at a single, “effective”, epoch or redshift.

I Define

zXYeff =

∫
dχ

[
W X (χ)W Y (χ)/χ2

]
z∫

dχ [W X (χ)W Y (χ)/χ2]

such that the linear term in the expansion of P(k , z) about
zXYeff cancels in the computation of CXY

` .

I The C` computed with P(k , zeff) fixed are within 1.5% of the
full result for ∆z ≤ 0.5 and ` > 10 for 1 < z < 3.



Fitting function accuracy
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Fitting function accuracy
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