Wide angle effects in redshift surveys (a.k.a. "What the heck are we measuring?") Emanuele Castorina & Martin White (UCB/LBNL)

June 2018

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Redshift space

- \triangleright The observed redshift of a cosmological object has contributions from the Hubble expansion and the peculiar velocity.
- \triangleright We convert z to a distance using a distance-redshift relation.
- \triangleright Thus in redshift surveys we measure not the true position of objects but their redshift-space position:

$$
\mathbf{s} = \mathbf{r} + \hat{r} \cdot \mathbf{v} / (aH) \,\hat{r}
$$

- \triangleright This is both a blessing and a curse:
	- \triangleright it makes the analysis more complicated, but
	- \blacktriangleright it gives access to more information.

[Throughout all my 3D positions will be in redshift space. Real-space quantities will be called out specifically.]

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Plane-parallel approximation

- \triangleright Each redshift-space position depends upon 1 component of velocity.
- \triangleright For narrow fields or objects at high redshift, the plane-parallel or distant observer approximation(s) are valid:
	- ► we can replace \hat{s} with a fixed vector (conventionally \hat{z}).
	- \blacktriangleright all objects 'probe' same component of velocity.
- \blacktriangleright This is the standard assumption/approximation in the field, and is nearly ubiquitous in theory and data analysis.
- \triangleright This assumption restores a symmetry which is absent in the full calculation.

We are not *always* in that limit, and it is interesting to ask 'fundamental' questions about what we're measuring and how that limit is approached.

History

This is an **old** question, which has been explored since the first papers on redshift-space distortions. We are treading some new ground, but building upon a vast amount of earlier work!

Hamilton (1992); Hamilton & Culhane (1996); Zaroubi & Hoffman (1996); Szalay et al. (1998); · · · ; Raccanelli et al. (2014); Yoo & Seljak (2015); Samushia et al. (2015); Reimberg et al. (2016); Castorina & White (2018a,b).

[I will concentrate on 'physical' wide angle effects, not those induced by the survey selection function – see paper for the latter. Ditto for lightcone effects and h.o. functions.]

KORK (FRAGE) EL POLO

The two-point function

- \triangleright Observer viewing two galaxies, at \vec{s}_1 and \vec{s}_2 .
- \blacktriangleright Separation vector $\vec{s} = \vec{s}_1 - \vec{s}_2.$
- \triangleright Opening angle θ .
- \blacktriangleright Line of sight = angle bisector (\vec{d})
- \blacktriangleright Define $\mu=\cos\phi=\hat{s}\cdot\hat{d}$.

The BAO scale at $z = 0.2$ has $\theta \simeq$ 0.2; at $z=1$ have $\theta \simeq 0.05.$

The two-point function

- \blacktriangleright \hat{s} is different for the two legs, we've lost translational invariance – the observation picks a preferred origin (us).
- \blacktriangleright Breaks translational invariance down into remaining rotation of \hat{d} and rotation about \hat{d} .
- \blacktriangleright Clustering depends on triangle:

 $\xi = \xi(\triangle) \neq \xi(\mathbf{s})$

Triangles!

Several ways to specify the triangle, starting from s_1 and s_2 and allowing rotations of \hat{d} and around \hat{d} :

- \triangleright Use angle bisector, **d**, and relative coordinate, $s = s_1 s_2$ to specify $\xi(\triangle) = \xi(s, d, \mu = \hat{d} \cdot \hat{s})$.
- Same but using the mid-point as d .
- Same but using an end-point s_1 (or s_2) as d.
- **Give two side lengths and enclosed angle:** $\xi(s_1, s_2, \cos \theta)$.
- \blacktriangleright Several others we won't need.

Can convert different conventions using Euclidean geometry theorems about triangles: kind of fun if you're into that kind of thing.

KORKAR KERKER EL VOLO

Results - bisector

For the angle-bisector definition of d the effects in configuration space are small, $\mathcal{O}(\theta^2)$, but not negligible at high ℓ :

 2990

Results - endpoint

The effects are much larger, $\mathcal{O}(\theta)$, for the endpoint definition:

K ロメ K 御 X K 君 X K 君 X Ε 299

Odd multipoles

...and the endpoint definition introduces odd multipoles:

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) È 299

Power spectrum

How do I Fourier transform $\xi(\triangle)$?

 \triangleright Since we've lost the translational symmetry of the underlying problem, there is no longer an obvious $P(\mathbf{k})$:

$$
\langle \delta(\mathbf{k}_1) \delta^{\star}(\mathbf{k}_2) \rangle \neq (2\pi)^3 \delta^{(D)}(\mathbf{k}_1 - \mathbf{k}_2) P(\mathbf{k}_1)
$$

- \triangleright We need to take care in specifying what we mean by "the" power spectrum
	- \blacktriangleright Zarroubi & Hoffman 1996; Szalay++98; \cdots
- \triangleright So what is it that we've measured when we quote $P(\mathbf{k})$ in a redshift survey?

KORKAR KERKER EL VOLO

 \triangleright What would a sensible definition look like?

Power spectrum

- \triangleright We need to take care in specifying what we mean by "the" power spectrum
	- \blacktriangleright Zarroubi & Hoffman 1996; Szalay++98; \cdots
- \triangleright A fruitful definition is a 'mixed' statistic:

$$
P(\mathbf{k},\mathbf{d})=\int d^3s \; e^{-i\mathbf{k}\cdot\mathbf{s}}\xi(\mathbf{s},\mathbf{d})=\sum_{\ell n}(kd)^{-n}P_{\ell}^{(n)}(k)\mathcal{P}_{\ell}(\mu_k)
$$

and the plane-parallel limit is $kd \rightarrow \infty$.

 \blacktriangleright The multipoles of P and ξ are related by a Hankel transform:

$$
P_{\ell}(k,d) = 4\pi(-i)^{\ell} \int s^2 \, ds \, \xi_{\ell}(s,d) j_{\ell}(ks)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Most other definitions lead to difficulties...

Yamamoto estimator

- \triangleright People usually compute $P(k)$ using the 'Yamamoto' estimator.
- This is an approximation to $\int (d^3d/V)P(\mathbf{k}; d)$.
- \triangleright P_i can be computed by summing over pairs, but this is slow and 'expensive'.
- People usually use end-point definition: $\hat{d} = \hat{s}_1$, then the $P_{\ell}(k)$ estimator factorizes and can use FFTs ...
- \blacktriangleright ... but it gives corrections at $\mathcal{O}(\theta)$ rather than $\mathcal{O}(\theta^2)$ (and mixes Hankel transforms in a very non-trivial way).
- \triangleright Corrections grow with ℓ : possibly important if computing wedges or treating fiber assignment this way.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Power spectra

 \mathbb{R}^n K ロメ K 御 X K 君 X K 君 X 299

Masks

We are familiar with a mask in a survey generating a 'window function'. Specifically if our density field is multiplied by $W(x)$ (usually 0 or 1) then

$$
P(\mathbf{k}) = \int \frac{d^3q}{(2\pi)^3} P(\mathbf{q}) \left| \widetilde{W}(\mathbf{k} - \mathbf{q}) \right|^2
$$

However, this transition from multiplication to convolution assumes translational invariance – which is violated in wide-angle.

Leading order wide angle terms become important at the same scale as the mask does.

[Indications that this could matter for BOSS and future surveys]

KORK ERKER ADE YOUR

Masks

Need to follow an approach which is a generalization of the "pseudo- C_{ℓ} " method used in CMB. For bisector-Yamamoto

$$
\langle \hat{P}_L(k) \rangle \propto \sum_{\ell} \int \frac{d^3s_1 d^3s_2}{V} W_{\ell}^L(s, d) \underbrace{\xi_{\ell}(s, d)}_{\int P(k')j_{\ell}(k's)}
$$

Note $\xi_{\ell}(s)j_{\ell}(ks)$ is *not* a Hankel transform! One can compute W_ℓ^L efficiently using randoms:

$$
W_{\ell}^{L}(s, d) = \int \frac{d\Omega_{1} d\Omega_{2}}{4\pi} W_{1} W_{2} \mathcal{P}_{\ell}(\hat{s} \cdot \hat{d}) \mathcal{P}_{L}(\hat{s} \cdot \hat{d})
$$

(sum over pairs of randoms, binning the integrand in bins of s,d).

[For the FFT estimator there are a few extra terms.]

KORKAR KERKER EL VOLO

Power spectra - BOSS window

K ロメ K 御 X K 君 X K 君 X ミー 299

Aside:

- \triangleright This formalism could be useful for 21 cm interferometers which observe the sky with wide primary beams.
- It could be useful for 'nearby' surveys aimed at BAO or large-scale velocities.
- \triangleright Also it offers a way of immunizing yourself against systematics which vary slowly with distance, e.g. purely angular systematics and a principled way to marginalize at the 2-point function level
- It overcomes a big issue with the SFB formalism: covariances.

Fisher et al. (1994); Heaves & Taylor (1995); Tadros et al. (1999); Taylor et al. (2001); Padmanabhan et al. (2001); Percival et al. (2004); Padmanabhan et al. (2007); · · · ; Yoo & Desjacques (2013); Pratten & Munshi (2013); Nicola et al. (2014); Liu et al. (2016); Passaglia et al. (2017).

Conclusions

- \triangleright Beyond plane-parallel what it is we're measuring requires some thought.
	- \triangleright Outside of the distant observer limit $\xi = \xi(\triangle)$ not $\xi(\mathbf{s})$.
	- \triangleright There is no 'natural' $P(k)$ definition, or even obvious plane-parallel limit.
	- \triangleright Symmetry breaking!
- \triangleright Effects are small, but not negligible.
	- Grow with ℓ and s/d (i.e. large scale).
	- Analytic models work well, highlight issues.
- Standard FFT $P_L(k)$ estimator has $\mathcal{O}(\theta)$ corrections.
- \triangleright Formalism for masks becomes more complex.
	- \triangleright Could be seeing this already.
- Interesting connections with sFB , intensity mapping, mode marginalization, ...

KORK ERKER ADE YOUR

The End!

イロト イ御 トイミト イミト ニミー りんぴ

.

Plane parallel or distant observer limit

- **Figure** The plane-parallel limit is regained in the limit $d \to \infty$.
- In the angle bisector definition we usually define $x = s/d$, so that $\xi = \xi(s, x, \mu)$. Expanding in power of x and in multipoles:

$$
\xi(s, x, \mu) = \sum_{\ell n} x^n \xi_{\ell}^{(n)}(s) \mathcal{P}_{\ell}(\mu)
$$

 \blacktriangleright The plane-parallel limit is

$$
\xi^{\mathrm{pp}} = \lim_{x \to 0} \xi(s, x, \mu) = \sum_{\ell} \xi_{\ell}^{(0)}(s) \mathcal{P}_{\ell}(\mu)
$$

KORK ERKER ADE YOUR

The BAO scale at $z = 0.2$ has $\theta \simeq 0.2$; at $z = 1$ have $\theta \simeq 0.05$.

Plane parallel or distant observer limit

In linear theory

$$
\xi_{\ell}^{(n)}(s,d) = \int \frac{k^2 \, dk}{2\pi^2} (kd)^{-n} P_{\text{lin}}(k) j_{\ell}(ks) \sim x^n \xi_{\ell}^{(0)}
$$

- \triangleright For the angle bisector or midpoint definitions, which are 'symmetric', the first correction comes in at $\mathcal{O}(\theta^2)$, or $\mathcal{O}(x^2)$.
- For the endpoint convention the first correction is $\mathcal{O}(\theta)$, however the correction can be expressed in terms of known terms – it contains no further signal.

\n- e.g.
$$
\xi_1(s, s_1) = -(3/5)(s/s_1) \xi_2^{\rm pp}(s) + \cdots
$$
\n- e.g. $\xi_3(s, s_1) = (3/5)(s/s_1) \xi_2^{\rm pp}(s) - (10/9)(s/s_1) \xi_4^{\rm pp}(s) + \cdots$
\n

KORK ERKER ADE YOUR

Zeldovich and wide angle effects

- \triangleright Conveniently, wide-angle effects occur at large scales where we can use analytic techniques.
- \triangleright All analytical results on wide-angle effects have assumed linear theory (with linear bias).
	- \blacktriangleright Reproduced and extended those results.
- ► Can compute $\xi(\triangle)$ precisely within the Zeldovich approximation, including complex bias modeling.
	- \blacktriangleright Tassev 2014 states this, but didn't pursue it.
- In Castorina & White (2018b) we give the full expressions and various limits.

KID KA KERKER KID KO

 \blacktriangleright This allows one to beyond $\ell = 4$, and to include advection properly.

Window function effects

Window vs. no-window at $z = 0.38$ for BOSS:

Courtesy: E. Castorina & F. Beutler

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 2990

造

MAPS I

- \triangleright The last convention (side lengths and included angle) is the most obvious generalization of CMB formalism, and the most directly connected to observables:
	- \triangleright s_i are related to redshift and hence frequency,
	- $\rightarrow \theta$ is the observed angular separation.
- \triangleright Normally you Legendre transform in angle to get the multi-frequency angular power spectrum (MAPS):

$$
\xi(s_1, s_2, \cos \theta) = \sum_{\ell} \frac{2\ell+1}{4\pi} C_{\ell}(s_1, s_2) \mathcal{P}_{\ell}(\cos \theta)
$$

 \triangleright Alternatively you can think of spherical transforming the slices at s_1 and s_2 into $a_{\ell_1 m_1} (s_1)$ and $a_{\ell_2 m_2} (s_2)$ then

$$
\left\langle a_{\ell_1 m_1}^\star(s_1) a_{\ell_2 m_2}(s_2) \right\rangle = C_\ell(s_1,s_2) \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}
$$

 \triangleright A further Hankel transform in the length of the legs gives $C_{\ell}(k_1, k_2)$ [connection to sFB formalism of Heavens & Taylor (1995)].

MAPS: plane parallel limit

In the plane-parallel limit, C_{ℓ} is a bit of a hybrid. Changing variables from s_1 and s_2 to $d = (s_1 + s_2)/2$ and $s_{\parallel} = s_1 - s_2$ we have

$$
C_{\ell}(s_{\parallel}, d) = 2\pi \int d(\cos \theta) \xi(s, d, \mu) P_{\ell}(\cos \theta)
$$

\n
$$
\approx 2\pi \int \tilde{\omega} d\tilde{\omega} \xi(s_{\perp}, s_{\parallel}, d) J_0(\ell \tilde{\omega}) \qquad [\tilde{\omega} = 2 \sin \left(\frac{\theta}{2}\right)]
$$

\n
$$
\approx \int \frac{d^2 s_{\perp}}{d^2} \xi(s_{\parallel}, s_{\perp}, d) e^{i\mathbf{k}_{\perp} \cdot \mathbf{s}_{\perp}}
$$

\n
$$
\approx \int_0^{\infty} \frac{dk_{\parallel}}{\pi d^2} P(\mathbf{k}_{\perp} = \ell/d, k_{\parallel}) \cos(k_{\parallel} s_{\parallel})
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

with $s_{\parallel} = s\mu$ to lowest order in s/d (and $\ell = k_{\perp}d$).

MAPS: beyond plane-parallel

- Interestingly the high- ℓ moments come from aliasing of low L power through geometry, in the same way that high ℓ in the CMB angular power spectrum can come from the density $(L = 0)$ and velocity $(L = 1)$ of the photon fluid.
- In Castorina & White (2018) we worked through the angular momentum addition to find the exact relation beyond plane-parallel:

$$
C_{\ell}(\underbrace{k_1, k_2}_{1D}) = \sum_{nL} \mathcal{M}^{(n)}_{\ell L}(k_1, k_2) P_L(\underbrace{k_2}_{3D})
$$

KID KA KERKER KID KO

 $\blacktriangleright\;\mathcal{M}_{\ell L}^{(n)}$ depends only on geometry, not cosmology.

Yamamoto estimator

In surveys $P_{\ell}(k)$ is usually computed using "the Yamamoto" estimator":

$$
P_L^Y(k) = (2L+1) \int \frac{d\Omega_k}{4\pi} \frac{d^3s_1 d^3s_2}{V} \delta(\mathbf{s}_1) \delta(\mathbf{s}_2) e^{-i\mathbf{k}\cdot\mathbf{s}} P_L(\hat{k}\cdot\hat{d})
$$

- ▶ One can show that $P_{\ell}^{Y} = \int (d^3 d/V) P_L(k, d)$.
- \blacktriangleright The 'full' Yamamoto estimator is very expensive to compute, so people usually use end-point definition: $\hat{d} = \hat{s}_1$.
- \blacktriangleright This allows the use of FFTs, ...
- \blacktriangleright ... but it gives corrections at $\mathcal{O}(\theta)$ rather than $\mathcal{O}(\theta^2)$ and mixes Hankel transforms in a very non-trivial way.
- \triangleright Corrections grow with L: possibly important if computing wedges or treating fiber assignment this way.