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Redshift space

I The observed redshift of a cosmological object has
contributions from the Hubble expansion and the peculiar
velocity.

I We convert z to a distance using a distance-redshift relation.

I Thus in redshift surveys we measure not the true position of
objects but their redshift-space position:

s = r + r̂ · v/(aH) r̂

I This is both a blessing and a curse:
I it makes the analysis more complicated, but
I it gives access to more information.

[Throughout all my 3D positions will be in redshift space.
Real-space quantities will be called out specifically.]



Plane-parallel approximation

I Each redshift-space position depends upon 1 component of
velocity.

I For narrow fields or objects at high redshift, the plane-parallel
or distant observer approximation(s) are valid:

I we can replace ŝ with a fixed vector (conventionally ẑ).
I all objects ‘probe’ same component of velocity.

I This is the standard assumption/approximation in the field,
and is nearly ubiquitous in theory and data analysis.

I This assumption restores a symmetry which is absent in the
full calculation.

We are not always in that limit, and it is interesting to ask
‘fundamental’ questions about what we’re measuring and how that

limit is approached.



History

This is an old question, which has been explored since the first
papers on redshift-space distortions. We are treading some new
ground, but building upon a vast amount of earlier work!

Hamilton (1992); Hamilton & Culhane (1996); Zaroubi & Hoffman
(1996); Szalay et al. (1998); · · · ; Raccanelli et al. (2014); Yoo &
Seljak (2015); Samushia et al. (2015); Reimberg et al. (2016);

Castorina & White (2018a,b).

[I will concentrate on ‘physical’ wide angle effects, not those
induced by the survey selection function – see paper for the latter.

Ditto for lightcone effects and h.o. functions.]



The two-point function

I Observer viewing two
galaxies, at ~s1 and ~s2.

I Separation vector
~s = ~s1 − ~s2.

I Opening angle θ.

I Line of sight = angle
bisector (~d)

I Define
µ = cosφ = ŝ · d̂ .

The BAO scale at z = 0.2
has θ ' 0.2; at z = 1 have

θ ' 0.05.
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The two-point function

I ŝ is different for the
two legs, we’ve lost
translational invariance
– the observation picks
a preferred origin (us).

I Breaks translational
invariance down into
remaining rotation of d̂
and rotation about d̂ .

I Clustering depends on
triangle:

ξ = ξ(4) 6= ξ(s)

θ

2

θ

2

~s1 ~s2

~d
s(1
− t)

st

φ

����
�����

~s



Triangles!

Several ways to specify the triangle, starting from s1 and s2 and
allowing rotations of d̂ and around d̂ :

I Use angle bisector, d, and relative coordinate, s = s1 − s2 to
specify ξ(4) = ξ(s, d , µ = d̂ · ŝ).

I Same but using the mid-point as d.

I Same but using an end-point s1 (or s2) as d.

I Give two side lengths and enclosed angle: ξ(s1, s2, cos θ).

I Several others we won’t need.

Can convert different conventions using Euclidean geometry
theorems about triangles: kind of fun if you’re into that kind of
thing.



Results - bisector
For the angle-bisector definition of d the effects in configuration
space are small, O(θ2), but not negligible at high `:
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Results - endpoint
The effects are much larger, O(θ), for the endpoint definition:
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Odd multipoles
...and the endpoint definition introduces odd multipoles:
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Power spectrum

How do I Fourier transform ξ(4)?

I Since we’ve lost the translational symmetry of the underlying
problem, there is no longer an obvious P(k):

〈δ(k1)δ?(k2)〉 6= (2π)3δ(D)(k1 − k2)P(k1)

I We need to take care in specifying what we mean by “the”
power spectrum

I Zarroubi & Hoffman 1996; Szalay++98; · · ·
I So what is it that we’ve measured when we quote P(k) in a

redshift survey?

I What would a sensible definition look like?



Power spectrum

I We need to take care in specifying what we mean by “the”
power spectrum

I Zarroubi & Hoffman 1996; Szalay++98; · · ·
I A fruitful definition is a ‘mixed’ statistic:

P(k,d) =

∫
d3s e−ik·sξ(s,d) =

∑
`n

(kd)−nP
(n)
` (k)P`(µk)

and the plane-parallel limit is kd →∞.

I The multipoles of P and ξ are related by a Hankel transform:

P`(k, d) = 4π(−i)`
∫

s2 ds ξ`(s, d)j`(ks)

Most other definitions lead to difficulties...



Yamamoto estimator

I People usually compute P(k) using the ‘Yamamoto’ estimator.

I This is an approximation to
∫

(d3d/V )P(k; d).

I P` can be computed by summing over pairs, but this is slow
and ‘expensive’.

I People usually use end-point definition: d̂ = ŝ1, then the
P`(k) estimator factorizes and can use FFTs ...

I ... but it gives corrections at O(θ) rather than O(θ2) (and
mixes Hankel transforms in a very non-trivial way).

I Corrections grow with `: possibly important if computing
wedges or treating fiber assignment this way.



Power spectra
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Masks

We are familiar with a mask in a survey generating a ‘window
function’. Specifically if our density field is multiplied by W (x)
(usually 0 or 1) then

P(k) =

∫
d3q

(2π)3
P(q)

∣∣∣W̃ (k− q)
∣∣∣2

However, this transition from multiplication to convolution
assumes translational invariance – which is violated in wide-angle.

Leading order wide angle terms become important at the same
scale as the mask does.

[Indications that this could matter for BOSS and future surveys]



Masks

Need to follow an approach which is a generalization of the
“pseudo-C`” method used in CMB. For bisector-Yamamoto〈

P̂L(k)
〉
∝
∑
`

∫
d3s1 d

3s2
V

W L
` (s, d) ξ`(s, d)︸ ︷︷ ︸∫

P(k ′)j`(k ′s)

jL(ks)

Note ξ`(s)jL(ks) is not a Hankel transform!
One can compute W L

` efficiently using randoms:

W L
` (s, d) =

∫
dΩ1dΩ2

4π
W1W2P`(ŝ · d̂)PL(ŝ · d̂)

(sum over pairs of randoms, binning the integrand in bins of s,d).

[For the FFT estimator there are a few extra terms.]



Power spectra - BOSS window
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Aside:

I This formalism could be useful for 21 cm interferometers
which observe the sky with wide primary beams.

I It could be useful for ‘nearby’ surveys aimed at BAO or
large-scale velocities.

I Also it offers a way of immunizing yourself against systematics
which vary slowly with distance, e.g. purely angular
systematics and a principled way to marginalize at the 2-point
function level.

I It overcomes a big issue with the sFB formalism: covariances.

Fisher et al. (1994); Heaves & Taylor (1995); Tadros et al. (1999);
Taylor et al. (2001); Padmanabhan et al. (2001); Percival et al.

(2004); Padmanabhan et al. (2007); · · · ; Yoo & Desjacques
(2013); Pratten & Munshi (2013); Nicola et al. (2014); Liu et al.

(2016); Passaglia et al. (2017).



Conclusions

I Beyond plane-parallel what it is we’re measuring requires
some thought.

I Outside of the distant observer limit ξ = ξ(4) not ξ(s).
I There is no ‘natural’ P(k) definition, or even obvious

plane-parallel limit.
I Symmetry breaking!

I Effects are small, but not negligible.
I Grow with ` and s/d (i.e. large scale).
I Analytic models work well, highlight issues.

I Standard FFT PL(k) estimator has O(θ) corrections.
I Formalism for masks becomes more complex.

I Could be seeing this already.

I Interesting connections with sFB, intensity mapping, mode
marginalization, ...



.

The End!



Plane parallel or distant observer limit

I The plane-parallel limit is regained in the limit d →∞.

I In the angle bisector definition we usually define x = s/d , so
that ξ = ξ(s, x , µ). Expanding in power of x and in
multipoles:

ξ(s, x , µ) =
∑
`n

xn ξ
(n)
` (s)P`(µ)

I The plane-parallel limit is

ξpp = lim
x→0

ξ(s, x , µ) =
∑
`

ξ
(0)
` (s)P`(µ)

The BAO scale at z = 0.2 has θ ' 0.2; at z = 1 have θ ' 0.05.



Plane parallel or distant observer limit

In linear theory

ξ
(n)
` (s, d) =

∫
k2 dk

2π2
(kd)−nPlin(k)j`(ks) ∼ xnξ

(0)
`

I For the angle bisector or midpoint definitions, which are
‘symmetric’, the first correction comes in at O(θ2), or O(x2).

I For the endpoint convention the first correction is O(θ),
however the correction can be expressed in terms of known
terms – it contains no further signal.

I e.g. ξ1(s, s1) = −(3/5)(s/s1) ξpp2 (s) + · · ·
I e.g. ξ3(s, s1) = (3/5)(s/s1) ξpp2 (s)−(10/9)(s/s1) ξpp4 (s)+ · · ·



Zeldovich and wide angle effects

I Conveniently, wide-angle effects occur at large scales where
we can use analytic techniques.

I All analytical results on wide-angle effects have assumed linear
theory (with linear bias).

I Reproduced and extended those results.

I Can compute ξ(4) precisely within the Zeldovich
approximation, including complex bias modeling.

I Tassev 2014 states this, but didn’t pursue it.

I In Castorina & White (2018b) we give the full expressions and
various limits.

I This allows one to beyond ` = 4, and to include advection
properly.



Window function effects

Window vs. no-window at z = 0.38 for BOSS:
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MAPS I
I The last convention (side lengths and included angle) is the

most obvious generalization of CMB formalism, and the most
directly connected to observables:

I si are related to redshift and hence frequency,
I θ is the observed angular separation.

I Normally you Legendre transform in angle to get the
multi-frequency angular power spectrum (MAPS):

ξ(s1, s2, cos θ) =
∑
`

2`+ 1

4π
C`(s1, s2)P`(cos θ)

I Alternatively you can think of spherical transforming the slices
at s1 and s2 into a`1m1(s1) and a`2m2(s2) then〈

a?`1m1
(s1)a`2m2(s2)

〉
= C`(s1, s2)δ`1`2δm1m2

I A further Hankel transform in the length of the legs gives
C`(k1, k2) [connection to sFB formalism of Heavens & Taylor
(1995)].



MAPS: plane parallel limit

In the plane-parallel limit, C` is a bit of a hybrid. Changing
variables from s1 and s2 to d = (s1 + s2)/2 and s‖ = s1 − s2 we
have

C`(s‖, d) = 2π

∫
d(cos θ) ξ(s, d , µ)P`(cos θ)

' 2π

∫
ω̃d ω̃ ξ(s⊥, s‖, d)J0(`ω̃)

[
ω̃ = 2 sin

(
θ

2

)]
'

∫
d2s⊥
d2

ξ(s‖, s⊥, d)e ik⊥·s⊥

'
∫ ∞
0

dk‖
π d2

P(k⊥ = `/d , k‖) cos(k‖s‖)

with s‖ = sµ to lowest order in s/d (and ` = k⊥d).



MAPS: beyond plane-parallel

I Interestingly the high-` moments come from aliasing of low L
power through geometry, in the same way that high ` in the
CMB angular power spectrum can come from the density
(L = 0) and velocity (L = 1) of the photon fluid.

I In Castorina & White (2018) we worked through the angular
momentum addition to find the exact relation beyond
plane-parallel:

C`(k1, k2︸ ︷︷ ︸
1D

) =
∑
nL

M(n)
`L (k1, k2)PL (k2)︸︷︷︸

3D

I M(n)
`L depends only on geometry, not cosmology.



Yamamoto estimator

I In surveys P`(k) is usually computed using “the Yamamoto
estimator”:

PY
L (k) = (2L+1)

∫
dΩk

4π

d3s1 d
3s2

V
δ(s1)δ(s2) e−ik·sPL

(
k̂ · d̂

)
I One can show that PY

` =
∫

(d3d/V )PL(k, d).

I The ‘full’ Yamamoto estimator is very expensive to compute,
so people usually use end-point definition: d̂ = ŝ1.

I This allows the use of FFTs, ...

I ... but it gives corrections at O(θ) rather than O(θ2) and
mixes Hankel transforms in a very non-trivial way.

I Corrections grow with L: possibly important if computing
wedges or treating fiber assignment this way.


