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Combining PT and N-body simulations

▶ We’ve been wondering/thinking about how to combine the
two most common approaches to LSS modeling
▶ Numerical simulations.
▶ Perturbation theory.

▶ They have a lot in common!
▶ We normally start simulations using PT, and we can ‘realize’

PT on a grid.

▶ So what are the best ways they can help each other?
▶ Accurate predictions from ‘small’ boxes.
▶ Bias modeling and non-perturbative dynamics.
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Background: Control Variates

(First introduced into LSS by Chartier & Wandelt as “CARPool”)
▶ Imagine I want ⟨x⟩ but realizations of x are expensive to

produce.
▶ Example, the matter power spectrum or halo power spectrum.
▶ Especially true for simulations of high resolution, or including

hydrodynamics, or RT, where boxes tend to be ‘small’.

▶ Further assume I can cheaply produce c, where c is correlated
with x and µc = ⟨c⟩ is known.
▶ c is known as the control variate.
▶ Example: c is the density power spectrum in the Zeldovich

approximation (lowest order LPT).

▶ If we form
y ≡ x− β (c− µc)

then ⟨y⟩ is an unbiased estimator of ⟨x⟩ for any β.



Background: Control Variates

▶ Now choose

β⋆ =
Cov[x, c]

σ2
c

(really a matrix expression but frequently just approximate as
diagonal).

▶ Then

Var[y] = Var[x]
(
1− ρ2xc

)
, ρxc ≡ Cov[x, c]

Std[x]Std[c]

▶ If ρxc ≈ 1 then y is a very low noise/scatter quantity that
well-estimates ⟨x⟩.

▶ Heuristically if c fluctuates above µc then x probably also
fluctuated “up” so you should correct it down.



Zeldovich Control Variates

▶ Simulations always have limited dynamic range; in particular
large scales are often “noisy” due to sample variance.

▶ PT works very well on large scales!

▶ If you start your simulation using Lagrangian PT (e.g. the
Zeldovich approximation, or higher order) then you already
have a surrogate field that is well correlated with your final
density field (of matter, galaxies, gas, electrons, ...).

▶ No need to generate special ICs, rerun your simulation or do
anything ‘fancy’ !!

▶ This technique is mathematically rigorous, and works for all
spectra (including higher-order spectra, etc.)



Zeldovich and the cosmic web!

Zel'dovich density Nonlinear density Difference

Kokron+22



Very correlated!
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Zeldovich approximation: algebra

In the Lagrangian picture of structure formation, δ(x) is calculated
from the movement of Lagrangian fluid elements across time.
Particles located at a position q at initial conditions are advected
to

x(a) = q+Ψ(q, a).

where a = (1 + z)−1 is the scale factor.
If the initial distribution of densities is approximately uniform,
ρ(q) ≈ ρ̄, then at late times

1 + δt(x, a) =

∫
d3q F [δ(q)]δ(D) (x− q−Ψ(q, a))

We expand the functional F [δ(q)]

F [δ(q)] ≈ 1 + b1δ(q) + b2(δ
2(q)− ⟨δ2⟩) + · · ·



Zeldovich approximation: algebra

In the first order solution to Lagrangian Perturbation Theory, the
Zeldovich approximation, fluid elements in the Universe propagate
in straight lines, with a direction set by the potential sourced by
the initial matter distribution. These displacements are obtained by
solving the linearized continuity equation, and read

ΨZA(q, a) =
∫

d3k

(2π)3
e ik·q

ik
k2

δlin(k).

Note that Ψ is Gaussian!



Zeldovich approximation: algebra

We evaluate P(k) using a generating function(al)

Z(q, λn, an) =
〈
eM(q1,q2,λn,an)

〉
where the exponent is defined as

M(q1,q2) = ik ·∆+
∑
n=1,2

λnδ(qn) + an,ijsij(qn)

and ∆ = Ψ(q1)−Ψ(q2).
Since M is Gaussian we have that Z is simply given by the
exponentiated second cumulant (free field theory).



Zeldovich approximation: algebra

In order to obtain the biased-tracer power spectrum we use the
substitutions

b1δn → b1
d

dλn
, b2δ

2
n → b2

d2

dλ2
n

, bss
2
n → bsδiaδjb

d

dan,ij

d

dan,ab
.

in the bias functional F (qn), which becomes an operator F̂n. The
power spectrum is then given by

P(k) =

∫
d3q e ik·q F̂1F̂2Z(q, λn, an)

∣∣∣
an,λn=0



Zeldovich approximation: algebra

Tracer power spectra will receive contributions from correlations
between the advected operators that compose the functional F .
This decomposition will have the form

Ptt(k) =
∑

i ,j∈{1,δ,δ2,··· }

bibjPij(k),

and
Ptm(k) =

∑
j∈{1,δ,δ2,··· }

bjP1j(k),

where P1j are cross-correlations between the matter density field
and the bias operators.
For example

Pgg (k) = P11(k) + 2b1P1δ(k) + b21Pδδ(k) + · · ·
Pgm(k) = P11(k) + b1P1δ(k) + · · ·



Zeldovich approximation: algebra

If we write

Aij(q) = ⟨∆i∆j⟩ = X (q)δij + Y (q)q̂i q̂j

then each of the component spectra can be written as

Pij(k) =

∫
d3q e ik·q−

1
2
kikjAij Fij(k,q)

where

(1, 1) : 1

(1, b1) : iki ⟨δ1∆i ⟩
(b1, b1) : ξL − kikj⟨δ1∆i ⟩⟨δ1∆j⟩

etc



Zeldovich approximation: algebra

All of the correlators, ⟨δ1∆i ⟩, etc. can be done as Hankel
transforms.
Each of the terms is scalar, vector, tensor, ... under rotations so
the resulting expressions for the Pij can also be written in terms of
Hankel transforms:

Pij(k) = 4π
∞∑
ℓ=0

∫
q2dq e−k2(X+Y )/2

(
kY

q

)ℓ

f
(ℓ)
ij (q, k)jℓ(kq),

with the f
(ℓ)
ij are simply related to the Fij kernels above.

Each of the Hankel transforms can be done numerically using FFTs
(very fast!).

https://github.com/sfschen/ZeNBu

https://github.com/sfschen/ZeNBu


.

Does it work?



Accurate predictions from small boxes!

An example of measuring Pgg and Pgm from a single 1 h−1Gpc
box, after applying CV and compared to the average of 100 such
boxes (light lines extend to low k using PT).
[Even better performance for Pmm; not shown.]

10 3 10 2 10 1

k [h Mpc 1]

104

P g
[g

,m
] [

h
1 M

pc
]

3

CV Pgg(k)
CV Pgm(k)
Mean spectrum

Single Pgg(k)
Single Pgm(k)

10 2 10 1 100

k [h Mpc 1]

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n 
ra

tio Pgg

Pgm

Kokron+22



Also in configuration space
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Large reduction in errors!
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Resolution requirements
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Simulations and Symmetries

▶ We can simulate structure formation in a DM-only Universe
pretty well.

▶ It’s the baryonic component that is “hard”!
▶ Don’t understand cooling, star-formation, feedback, ...
▶ Resort to parameterized models (when to stop adding

parameters, how to test for numerical convergence?)

▶ Symmetries-based thinking is ubiquitous in PT studies and
very powerful.

▶ PT folks and simulators are trying to solve the same problems
...

▶ Can we have the best of both worlds?
▶ Use dynamics from N-body simulations, but the “galaxies”

(symmetries-based bias technique) from perturbation theory
[Modi+20, Kokron+21, Hadzhiyska+21, Zennaro+21,...].



Can push into the non-linear regime

Can fit mock catalog data for “3× 2pt analyses” to 1-2% even for
samples with assembly bias and other complex selections and even
including hydrodynamics.

Now we can simply “emulate” the basis spectra using standard
techniques (no need to emulate the bias parameters – analytic)!

Kokron+21



The hybrid EFT procedure in pictures

Generate initial conditions as per usual ... from δL you can also
compute δ2L and the shear field, sij :

Each particle is assigned the δL, ... at its initial position.

Kokron+21



The hybrid EFT procedure in pictures

Advect the particles to their final positions using the full N-body
dynamics (i.e. run the simulation), and bin using weights 1, δL, δ

2
L,

etc.

Particles δ δ2 s2

30 h−1Mpc 0.0

2.5

5.0

7.5

10.0

(No need for halo or subhalo finding, merger trees, etc.)



The hybrid EFT procedure in pictures

Take all of the cross-spectra, PXY (k) using standard FFT
methods, e.g.
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The power spectrum for any biased tracer, or the cross-spectrum
between any two tracers, is a linear combination of these “basis
spectra” (10 in all) with analytic “bias dependence”:

∑
ij bibjPij .



Also does ‘baryons’
Classic Jeans argument would tell you that ∇p ∼ ∇c2s δ and
∇Φ ∼ ∇∇−2δ should be related by k2:
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And leads to unbiased fits
Cosmological parameter inference using an emulator with noiseless
data
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Is this just really easy?

A comparison of this “symmetries based bias expansion” or
“hybrid” approach with a constant or polynomial (multiplicative)
bias
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.

The End!


