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Combining PT and N-body simulations

» \We've been wondering/thinking about how to combine the
two most common approaches to LSS modeling

» Numerical simulations.
» Perturbation theory.
» They have a lot in common!
» We normally start simulations using PT, and we can ‘realize’
PT on a grid.
» So what are the best ways they can help each other?

» Accurate predictions from ‘small’ boxes.
» Bias modeling and non-perturbative dynamics.
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Background: Control Variates

(First introduced into LSS by Chartier & Wandelt as “CARPool")
» Imagine | want (x) but realizations of x are expensive to
produce.
» Example, the matter power spectrum or halo power spectrum.
» Especially true for simulations of high resolution, or including
hydrodynamics, or RT, where boxes tend to be ‘small’.
» Further assume | can cheaply produce ¢, where c is correlated
with x and pc = (c) is known.

» c is known as the control variate.
» Example: c is the density power spectrum in the Zeldovich
approximation (lowest order LPT).

» If we form
y=x-—p(c— pc)

then (y) is an unbiased estimator of (x) for any /3.



Background: Control Variates

» Now choose

(really a matrix expression but frequently just approximate as
diagonal).
> Then

Covlx, ]

Varly] = Varld (1-p%) - pxe = gramasiald

» If pxc = 1 then y is a very low noise/scatter quantity that
well-estimates (x).

» Heuristically if ¢ fluctuates above pi then x probably also
fluctuated “up” so you should correct it down.



Zeldovich Control Variates

» Simulations always have limited dynamic range; in particular
large scales are often “noisy” due to sample variance.

» PT works very well on large scales!

» If you start your simulation using Lagrangian PT (e.g. the
Zeldovich approximation, or higher order) then you already
have a surrogate field that is well correlated with your final
density field (of matter, galaxies, gas, electrons, ...).

» No need to generate special I1Cs, rerun your simulation or do
anything ‘fancy’!!

» This technique is mathematically rigorous, and works for all
spectra (including higher-order spectra, etc.)



Zeldovich and the cosmic web!

&

40h~Mpc
S0 =l

Kokron-+22



Very correlated!
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Zeldovich approximation: algebra

In the Lagrangian picture of structure formation, §(x) is calculated
from the movement of Lagrangian fluid elements across time.
Particles located at a position q at initial conditions are advected

to
x(a) = q+ W¥(q, a).

where a = (14 z)7! is the scale factor.
If the initial distribution of densities is approximately uniform,
p(q) = p, then at late times

1+ 6e(x,a) = / g F5(@)]6® (x - q - W(q, ))

We expand the functional F[4(q)]

F[5(q)] ~ 1+ bi6(a) + b2(5%(q) — (6%)) + - --



Zeldovich approximation: algebra

In the first order solution to Lagrangian Perturbation Theory, the
Zeldovich approximation, fluid elements in the Universe propagate
in straight lines, with a direction set by the potential sourced by
the initial matter distribution. These displacements are obtained by
solving the linearized continuity equation, and read

Pk eaik
WPA(q, a) = / G (k)

Note that W is Gaussian!



Zeldovich approximation: algebra

We evaluate P(k) using a generating function(al)
Z2(9 Any ay) = (eM@mAnan))
where the exponent is defined as

M(ar, a2) = k- A+ And(an) + an jsij(an)
n=1,2
and A = V(q1) — V(q2).

Since M is Gaussian we have that Z is simply given by the
exponentiated second cumulant (free field theory).



Zeldovich approximation: algebra

In order to obtain the biased-tracer power spectrum we use the
substitutions
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2
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in the bias functional F(q,), which becomes an operator F,. The
power spectrum is then given by

PU) = [ Pa et ARz a)| |
an,An=



Zeldovich approximation: algebra

Tracer power spectra will receive contributions from correlations

between the advected operators that compose the functional F.
This decomposition will have the form

Pt (k) = Z bibj Pjj(k),

IJ€{176’62a }
and

P™(k) = > biPy(k),
je{1,6,62,-- }

where Pj; are cross-correlations between the matter density field
and the bias operators.

For example

Pgg(k) = P11(k) + 2b1P15(k) + b3 Pys(k) + -+ -
Pgm(k) = P11(k) + b1 Pis(k) + - -



Zeldovich approximation: algebra

If we write
Aii(q) = (Aih;) = X(q)0; + Y(q)4:4;

then each of the component spectra can be written as

Pj(k) = / d’q e 2hAT Fy(k, )
where

(1L,1):1
(17 bl) Ik <(51A >
(b1, b1) 1 &L — kikj(010;) (614 ;)

etc



Zeldovich approximation: algebra

All of the correlators, (§14;), etc. can be done as Hankel
transforms.

Each of the terms is scalar, vector, tensor, ... under rotations so
the resulting expressions for the Pj; can also be written in terms of
Hankel transforms:

= _ kY \* _
Pi(k) :4W2/q2dq e K XEY)/2 (q) £9(q, k)je(kq),
(=0

with the I.J@ are simply related to the Fj; kernels above.

Each of the Hankel transforms can be done numerically using FFTs
(very fast!).
https://github.com/sfschen/ZeNBu


https://github.com/sfschen/ZeNBu

Does it work?



Accurate predictions from small boxes!

An example of measuring Pgg and P, from a single 1 h~1Gpc
box, after applying CV and compared to the average of 100 such
boxes (light lines extend to low k using PT).

[Even better performance for Pym; not shown.]
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Also in configuration space
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Large reduction in errors!
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Resolution requirements
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Simulations and Symmetries

» We can simulate structure formation in a DM-only Universe
pretty well.
» It's the baryonic component that is “hard”!
» Don't understand cooling, star-formation, feedback, ...
> Resort to parameterized models (when to stop adding
parameters, how to test for numerical convergence?)
» Symmetries-based thinking is ubiquitous in PT studies and
very powerful.

» PT folks and simulators are trying to solve the same problems

» Can we have the best of both worlds?

» Use dynamics from N-body simulations, but the “galaxies”
(symmetries-based bias technique) from perturbation theory
[Modi+20, Kokron+21, Hadzhiyska+21, Zennaro+21,...].



Can push into the non-linear regime

Can fit mock catalog data for “3 x 2pt analyses” to 1-2% even for
samples with assembly bias and other complex selections and even
including hydrodynamics.
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Now we can simply “emulate” the basis spectra using standard
techniques (no need to emulate the bias parameters — analytic)!
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The hybrid EFT procedure in pictures

Generate initial conditions as per usual ... from &; you can also
compute 6% and the shear field, s;:
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at its initial position.
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The hybrid EFT procedure in pictures

Advect the particles to their final positions using the full N-body
dynamics (i.e. run the simulation), and bin using weights 1, d, 52,
etc.
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(No need for halo or subhalo finding, merger trees, etc.)



The hybrid EFT procedure in pictures

Take all of the cross-spectra, Pxy (k) using standard FFT
methods, e.g.

=

Pxy (k) Mpe/h)?

The power spectrum for any biased tracer, or the cross-spectrum
between any two tracers, is a linear combination of these “basis
spectra” (10 in all) with analytic “bias dependence”: . bib;P;



Also does ‘baryons’
Classic Jeans argument would tell you that Vp ~ V2§ and

V& ~ VV 26 should be related by k?:
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And leads to unbiased fits

Cosmological parameter inference using an emulator with noiseless

data
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Is this just really easy?

A comparison of this “symmetries based bias expansion” or
“hybrid" approach with a constant or polynomial (multiplicative)
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The End!



