The Cosmological Legacy of Planck
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CMB map: smoothed + polarization
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Power spectrum ...
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The angular power spectrum
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Polarization-Temperature

150

100 -

50 A

_50 -

—100 A

—150

10 30 50 100 250 500 1000
Multipole

1500

2000



DiF [uK?]

Polarization and lensing
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Data compression!

e We find that a simple, 6 parameter model fits the data

extremely well.

— Data compression: trillions of bits of data are compressed to
billions of measurements at 9 frequencies, then tens of millions of
modes are compressed to thousands of multipoles which are
compressed to 6 cosmological parameters!

— With no evidence for a 7.

e For the “base model”’ the CMB determines all of the
parameters, on its own, with exceptional accuracy.

— If we include polarization, best determined parameter is 0.03%.
— Only 1 parameter not determined to better than 1%.



Planck(-only) base ACDM model

oy, Baryon density 0.02237 £ 0.00015
OR Cold dark matter density 0.1200 + 0.0012
1000, Angular size of acoustic 104092 + 0.00031

scale
Optical depth to Thomson

T ) 0.0544 £ 0.0073
scattering
IN(1019A,) Obse"a"riglft'l‘jgte“at'on 3.044 +0.014
Slope of primordial power
s spectrum (spectral index) Yelenilis 00

H, (km/s/Mpc) EXpﬂ‘;‘\‘/’;‘rggte & 67.36 + 0.54

Amplitude of fluctuations
o8 in matter today

And my favorite derived parameter: keq =0.01038+0.00008 Mpc"
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0.8111 +£ 0.006



Inflationary ACDM:
a great phenomenological model

- Model has withstood incredible increases in data quality
over the last 3+ decades.

Model predictions for anisotropy spectra were quite specific.

Many extensions/variants now highly constrained.
Puzzling contents:

Neutrino masses are O(100meV) not O(100GeV).
wgBBN = wg®MB ~ m,, ; DE smooth & “turns on” rapidly today.

No sign of “extra” relativistic species or spatial curvature ...

Model connects high-energy physics to cosmology and
“explains” 14Gyr of cosmic evolution, but our
understanding is “highly incomplete”!
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Planck & Inflation

e CMB quickly established early Universe origin of perturbations.
e Planck has had a huge impact on inflationary model building!
e A large number of “popular” models now ruled out.

e The simplest models of inflation predict ...

A spatially flat Universe 2,=0.0007 £ 0.0019
with nearly scale-invariant (red) spectrum of 0.967 £ 0.004
density perturbations

which is almost a power-law dng/dInk = -0.0042 + 0.0067
dominated by scalar perturbations r9.002<0.1 (95%; <0.07+BKP)
which are Gaussian fay =-09+£5.1~0

and adiabatic a_q = 0.00013 + 0.00037

with negligible topological defects fug < 0.01 (95%)
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Inflationary models

@ Coherence of peaks, sign of TE
— Early Universe origin of perturbations

e Q,~0: duration of slow-roll not fine tuned.

e Primordial P(k) well approximated by power-law.
— Inflaton rolls down a featureless, nearly flat potential.

@ No isocurvature modes: 1 d.o.f.

e Scalar modes dominate by 1 order of magnitude.
— Models with r~(1-n,) severely limited.

— Models with r~(1-n,)? require next-gen technology to limit.
— Models with r<<(1-n,)? out of reach of foreseeable technology.

e Surviving models have V'~0 and V'<0
— special point in potential.
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CMB lensing

e Photons from the CMB are deflected on their way to us
by the potentials due to large-scale structure.

e Gives sensitivity to the “low z” Universe.

— Allows us to break some degeneracies from purely within the
CMB dataset.

— Provides a cross-check on the paradigm: are the structures we
infer at z~2 consistent with the “initial conditions” measured at
z~1,0007? [After 10° growth: A #=0.997+0.03]

e Provides a map, over the whole sky, of the (projected)
mass back to the surface of last-scattering (98% of the
way to the horizon).
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Lensing now measured at >400
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A lensing first ---

<~ Planck was definitely not the first experiment to
+ Measure gravitational lensing

+ ... by large scale structure

< ...ofthe CMB

<~ However it was the first to do it over a significant fraction
of the sky with enough S/N to drive fits and provide a
sharp test of the theory.

< A “coming of age” story for CMB lensing.

< Planck ushers in a new era of CMB studies of the
“intermediate” redshift Universe, synergistically with DES,
WISE, HSC, DESI, PFS, LSST, Euclid, WFIRST, ...
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Cross-correlation with (un) WISE galaxies

Krolewski, Ferraro++
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Tomographic decomposition of lensing kernel
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CMB + LSS

e By cementing the gravitational instability paradigm and
measuring the ICs and parameters, Planck sets the
framework for LSS.

@ Planck precisely determines many of the key parameters
for large-scale structure (in ACDM):

— Koq = 0.01038 + 0.00008 Mpc', og(z=2) = 0.3211 £ 0.0009
e Planck calibrates the “standard fluctuation spectrum”.

— Sets the scale and level of inhomogeneity in the Universe.
— Governs structure formation, galaxy formation, etc.

Early on, the fields of LSS and CMB were tightly coupled.
With time they grew apart and specialized. | think we are
witnessing a re-coupling.
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The big picture

Planck TT
Planck EE
Planck ¢¢

DES Y1 cosmic shear
{ SDSS DR7 LRG

{ BOSS DR9 Ly-a forest
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Just plain cool ...

¢ In 2013 Planck detected the motion of the Earth in the
aberration of the measured CMB anisotropy.

— Observed at >40 in 2013 data.

e In 2015 we detected the impact of fluctuations in the 2K
neutrino background!
— Evidence for v background strong (N_=0 ruled out @ >100)

— Now have exquisite detection of free-streaming of this component
(measures of ¢ and c,;.?).

e In 2018 we measured the “gravitational slip” at z=1000 to
be 1.004 + 0.007.
— GR predicts itis 1.
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Conclusions

e Planck has “completed” the primary temperature anisotropy
story begun by COBE.

— Established acoustic physics as the “gold standard” probe.
e |Impressive confirmation of the standard cosmological model.
— Precise constraints on model and parameters.

— Tight limits on deviations from base model.

— Some indications of internal and external tensions, but with only
modest* statistical significance.

e Established CMB lensing as a competitive cosmological tool.

— Synergies between large-scale structure and CMB are only growing
in importance!
e The next decade will see a host of new facilities coming on
line, enabling increasingly precise tests of our models ...
building on the cosmological legacy of Planck.
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