Redshift space distortions and The growth of cosmic structure

Martin White
UC Berkeley/LBNL
with
Jordan Carlson and Beth Reid

(http://mwhite.berkeley.edu/Talks)

Outline

- Introduction
 - Why, what, where, ...
- The simplest model.
 - Supercluster infall: the Kaiser factor.
- Beyond the simplest model.
 - What about configuration space?
 - Difficulties in modeling RSD.
 - Insights from N-body.
 - Some new ideas.
- Conclusions.

RSD: Why

- What you observe in a redshift survey is the density field in redshift space!
 - A combination of density and velocity fields.
- Tests GI.
 - Structure growth driven by motion of matter and inhibited by expansion.
- Constrains GR.
 - Knowing a(t) and ρ_i , GR provides prediction for growth rate.
 - In combination with lensing measures Φ and Ψ .
- Measures "interesting" numbers.
 - Constrains H(z), DE, m_y , etc.
- Surveys like BOSS can make percent level measurements – would like to have theory to compare to!
- Fun problem!

RSD: What not

- Throughout I will be making the "distant" observer, and plane-parallel approximations.
- It is possible to drop this approximation and use spherical coordinates with r rather than Cartesian coordinates with z.
- References:
 - Fisher et al. (1994).
 - Heavens & Taylor (1995).
 - Papai & Szapudi (2008).
- Natural basis is tri-polar spherical harmonics.
- Correlation function depends on full triangle, not just on separation and angle to line-of-sight.

RSD: What

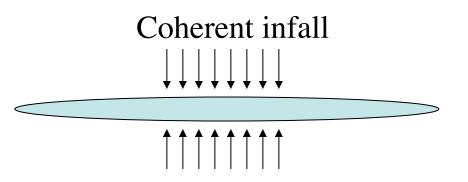
- When making a 3D map of the Universe the 3rd dimension (radial distance) is usually obtained from a redshift using Hubble's law or its generalization.
 - Focus here on spectroscopic measurements.
 - If photometric redshift uses a break or line, then it will be similarly contaminated. If it uses magnitudes it won't be.
- Redshift measures a combination of "Hubble recession" and "peculiar velocity".

$$v_{\rm obs} = Hr + v_{\rm pec} \quad \Rightarrow \quad \chi_{\rm obs} = \chi_{\rm true} + \frac{v_{\rm pec}}{aH}$$

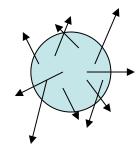
Redshift space distortions

The distortions depend on non-linear density and velocity fields, which are correlated.

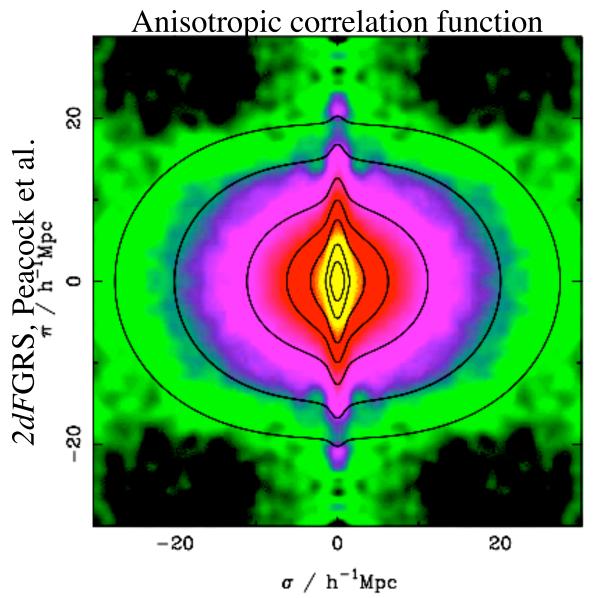
Velocities enhance power on large scales and suppress power on small scales.



Random (thermal) motion



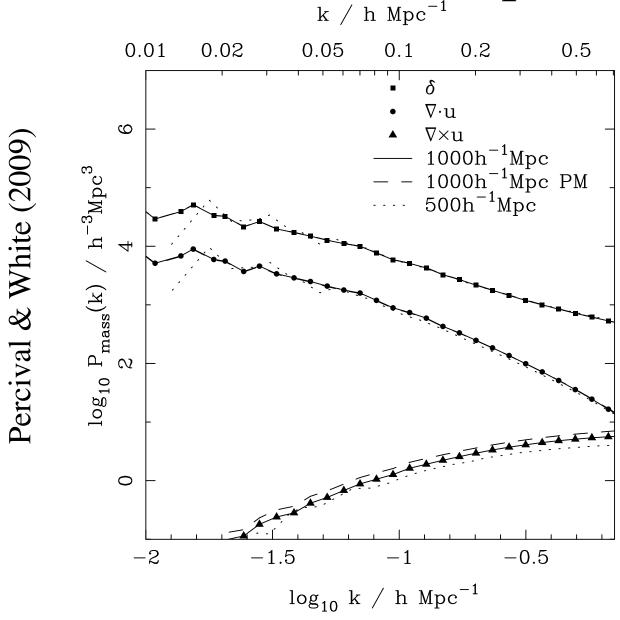
Redshift space distortions



Line-of-sight selects out a special direction and breaks rotational symmetry of underlying correlations.

We observe anisotropic clustering.

Velocities are ≈ potential flow



Assume that v comes from a potential flow (self-consistent; curl[v] $\sim a^{-1}$ at linear order) then it is totally specified by its divergence, θ .

Continuity equation

- Can be easily derived by stress-energy conservation, but physically:
 - Densities are enhanced by converging flows (and reduced by the stretching of space).
- To lowest order

$$\dot{\delta} = -a^{-1}\nabla \cdot v$$

$$\delta \frac{d\ln \delta}{d\ln a} H = -a^{-1}\nabla \cdot v$$

$$f\delta = \theta \equiv -\frac{\nabla \cdot v}{aH}$$

Kaiser formula

(Kaiser, 1987, MNRAS, 227, 1)

Mass conservation

$$(1 + \delta^r) d^3 r = (1 + \delta^s) d^3 s$$

Jacobian

$$\frac{d^3s}{d^3r} = \left(1 + \frac{v}{z}\right)^2 \left(1 + \frac{dv}{dz}\right)$$

Distant observer

$$1 + \delta^s = (1 + \delta^r) \left(1 + \frac{dv}{dz} \right)^{-1}$$

Potential flow

$$\frac{dv}{dz} = -\frac{d^2}{dz^2} \nabla^{-2}\theta$$

• Proportionality $\delta^s(\mathbf{k}) = \delta^r(\mathbf{k}) + \mu_k^2 \theta(\mathbf{k}) \simeq \left(1 + f \mu_k^2\right) \delta^r(\mathbf{k})$

Power spectrum

- If we square the density perturbation we obtain the power spectrum:
 - $P^{s}(k,\mu)=[1+f\mu^{2}]^{2} P^{r}(k)$
- For biased tracers (e.g. galaxies/halos) we can assume $\delta_{\rm obj}$ = $\delta_{\rm mass}$ and $\theta_{\rm obj}$ = $\theta_{\rm mass}$.
 - $P^{s}(k,\mu) = [b+f\mu^{2}]^{2} P^{r}(k) = b^{2}[1+\beta\mu^{2}]^{2} P^{r}(k)$

Fingers-of-god

- So far we have neglected the motion of particles/ galaxies inside "virialized" dark matter halos.
- These give rise to fingers-of-god which suppress power at high k.
- Peacock (1992) 1st modeled this as Gaussian "noise" so that
 - $P^{s}(k, \mu) = P^{r}(k) [b+f\mu^{2}]^{2} Exp[-k^{2}\mu^{2}\sigma^{2}]$
- Sometimes see this written as $P_{\delta\delta} + P_{\delta\theta} + P_{\theta\theta}$ times Gaussians or Lorentzians.
 - Beware: no more general than linear theory!

Widely used

Model		Damping	Fitted parameters	Reference	
1.	Empirical Lorentzian with linear $P_{\delta\delta}(k)$	Variable	f,b,σ_v	e.g. Hatton & Cole (1998)	
2.	Empirical Lorentzian with non-linear $P_{\delta\delta}(k)$	Variable	f,b,σ_v		
3.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 1-loop SPT	None	f, b	e.g. Vishniac (1983), Juszkiewicz et al. (1984)	
4.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 1-loop SPT	Variable	f,b,σ_v		
5.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 1-loop SPT	Linear	f,b		
6.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 1-loop RPT	None	f,b	Crocce & Scoccimarro (2006)	
7.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 1-loop RPT	Linear	f,b		
8.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 2-loop RPT	None	f,b		
9.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 2-loop RPT	Variable	f,b		
10.	$P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta}$ from 2-loop RPT	Linear	f,b		
11.	$P(k,\mu)$ from 1-loop SPT	None	f,b	Matsubara (2008)	
12.	$P(k,\mu)$ from 1-loop SPT	Linear	f,b		
13.	$P(k,\mu)$ with additional corrections	None	f,b	Taruya et al. (2010)	
14.	$P(k,\mu)$ with additional corrections	Variable	f,b,σ_v		
15.	$P(k,\mu)$ with additional corrections	Linear	f,b		
16.	Fitting formulae from N-body simulations	None	f, b	Smith et al. (2003), Jennings et al. (2011)	
17.	Fitting formulae from N-body simulations	Variable	f,b,σ_v		
18.	Fitting formulae from N-body simulations	Linear	f, b		

(Blake et al. 2012; WiggleZ RSD fitting)

Legendre expansion

Rather than deal with a 2D function we frequently expand the angular dependence in a series of Legendre polynomials.

$$\Delta^{2}(k,\hat{k}\cdot\hat{z}) \equiv \frac{k^{3}P(k,\mu)}{2\pi^{2}} = \sum_{\ell} \Delta_{\ell}^{2}(k)L_{\ell}(\mu)$$

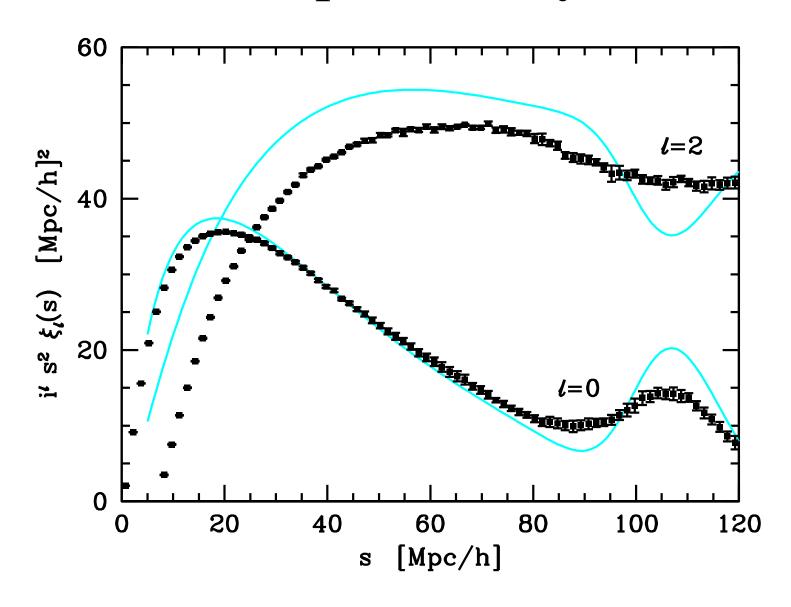
$$\xi(r,\hat{r}\cdot\hat{z}) \equiv \sum_{\ell} \xi_{\ell}(r)L_{\ell}(\hat{r}\cdot\hat{z}) , \quad \xi_{\ell}(r) = i^{\ell} \int \frac{dk}{k} \Delta_{\ell}^{2}(k)j_{\ell}(kr)$$

On large scales ($k\sigma$ <<1) this series truncates quite quickly.

$$\begin{pmatrix} \Delta_0^2(k) \\ \Delta_2^2(k) \\ \Delta_4^2(k) \end{pmatrix} = \Delta^2(k) \begin{pmatrix} b^2 + \frac{2}{3}bf + \frac{1}{5}f^2 \\ \frac{4}{3}bf + \frac{4}{7}f^2 \\ \frac{8}{35}f^2 \end{pmatrix}$$

Typically only measure (well) *I*=0, 2.

Kaiser is not particularly accurate



In configuration space

- There are valuable insights to be gained by working in configuration, rather than Fourier, space.
- We begin to see why this is a hard problem ...

$$1 + \xi^{s}(R, Z) = \left\langle \int dy \ (1 + \delta_{1})(1 + \delta_{2})\delta^{(D)}(Z - y - v_{12}) \right\rangle$$
$$1 + \xi^{s}(R, Z) = \left\langle \int dy \ (1 + \delta_{1})(1 + \delta_{2}) \int \frac{d\kappa}{2\pi} e^{i\kappa(Z - y - v_{12})} \right\rangle$$

Note all powers of the velocity field enter.

Gaussian limit

(Fisher, 1995, ApJ 448, 494)

 If δ and v are Gaussian can do all of the expectation values.

$$1 + \xi^{s}(R, Z) = \int \frac{dy}{\sqrt{2\pi\sigma_{12}^{2}(y)}} \exp\left[-\frac{(Z - y)^{2}}{2\sigma_{12}^{2}(y)}\right] \times \left[1 + \xi^{r}(r) + \frac{y}{r} \frac{(Z - y)v_{12}(r)}{\sigma_{12}^{2}(y)} - \frac{1}{4} \frac{y^{2}}{r^{2}} \frac{v_{12}^{2}(r)}{\sigma_{12}^{2}(y)} \left(1 - \frac{(Z - y)^{2}}{\sigma_{12}^{2}(y)}\right)\right]$$

Expanding around y=Z:

$$\xi^{s}(R,Z) = \xi^{r}(s) - \left. \frac{d}{dy} \left[v_{12}(r) \frac{y}{r} \right] \right|_{y=Z} + \left. \frac{1}{2} \frac{d^{2}}{dy^{2}} \left[\sigma_{12}^{2}(y) \right] \right|_{y=Z}$$

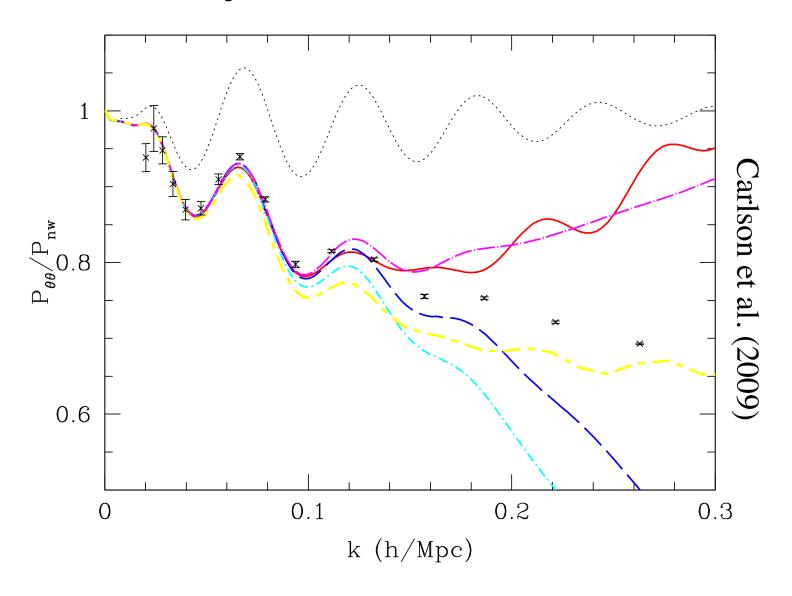
Linear theory: configuration space (Fisher, 1995, ApJ 448, 494)

- One can show that this expansion agrees with the Kaiser formula.
- Two important points come out of this way of looking at the problem:
 - Correlation between δ and v leads to v_{12} .
 - LOS velocity dispersion is scale- and orientationdependent.
- By Taylor expanding about r=s we see that ξ^s depends on the 1st and 2nd derivative of velocity statistics.

Two forms of non-linearity

- Part of the difficulty is that we are dealing with two forms of non-linearity.
 - The velocity field is non-linear.
 - The mapping from real- to redshift-space is nonlinear.
- These two forms of non-linearity interact, and can partially cancel.
- They also depend on parameters differently.
- This can lead to a lot of confusion ...

Velocity field is nonlinear



Non-linear mapping?

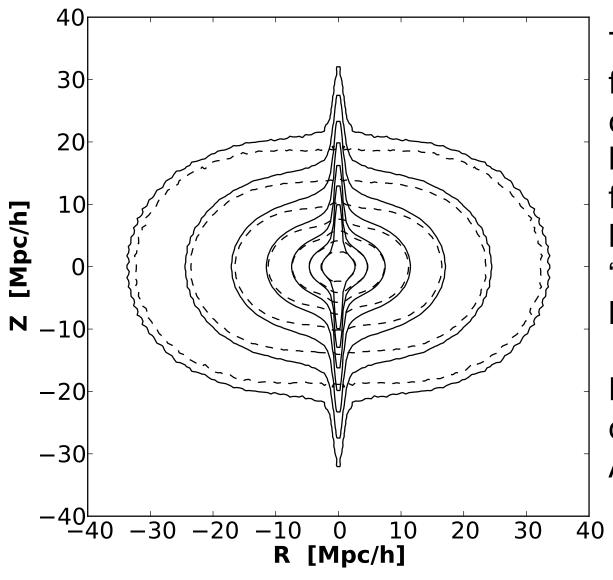
A model for the redshift-space clustering of halos

- We would like to develop a model capable of reproducing the redshift space clustering of halos over the widest range of scales.
- This will form the 1st step in a model for galaxies, but it also interesting in its own right.

Why halos?

- Are the building blocks of large-scale structure.
- Galaxies live there!
- Halos occupy "special" places in the density field.
 - $-\theta$ is a volume-averaged statistic.
- Dependence on halo bias is complex.
 - Studies of matter correlations not easily generalized!

The correlation function of halos



The correlation function of halo centers doesn't have strong fingers of god, but still has "squashing" at large scales.

Note RSD is degenerate with A-P.

Halo model

- There are multiple insights into RSD which can be obtained by thinking of the problem in a halo model language.
- This has been developed in a number of papers
 - White (2001), Seljak (2001), Berlind et al. (2001),
 Tinker, Weinberg & Zheng (2006), Tinker (2007).
- This will take us too far afield for now ...

Scale-dependent Gaussian streaming model

Let's go back to the exact result for a Gaussian field, a la Fisher:

$$1 + \xi^{s}(R, Z) = \int \frac{dy}{\sqrt{2\pi\sigma_{12}^{2}(y)}} \exp\left[-\frac{(Z - y)^{2}}{2\sigma_{12}^{2}(y)}\right] \times \left[1 + \xi^{r}(r) + \frac{y}{r} \frac{(Z - y)v_{12}(r)}{\sigma_{12}^{2}(y)} - \frac{1}{4} \frac{y^{2}}{r^{2}} \frac{v_{12}^{2}(r)}{\sigma_{12}^{2}(y)} \left(1 - \frac{(Z - y)^{2}}{\sigma_{12}^{2}(y)}\right)\right]$$

Looks convolution-like, but with a scale-dependent v_{12} and σ . Also, want to resum v_{12} into the exponential ...

Scale-dependent Gaussian streaming model

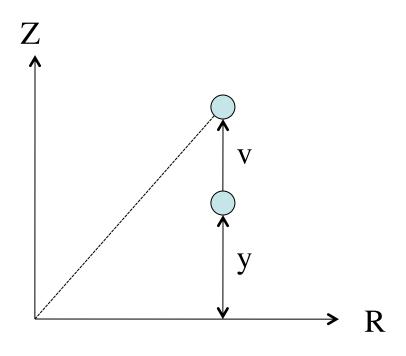
$$1 + \xi(R, Z) = \int dy \left[1 + \xi(r)\right] \mathcal{P}\left(v = Z - y, \mathbf{r}\right)$$

Note: *not* a convolution because of (important!) *r* dependence or kernel.

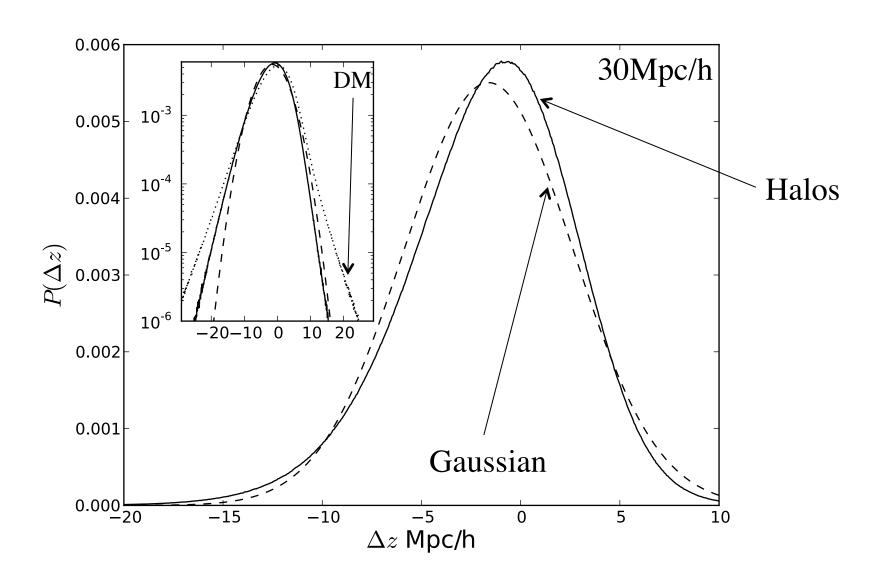
Non-perturbative mapping.

If lowest moments of *P* set by linear theory, agrees at linear order with Kaiser.

Approximate *P* as Gaussian ...



Gaussian ansatz

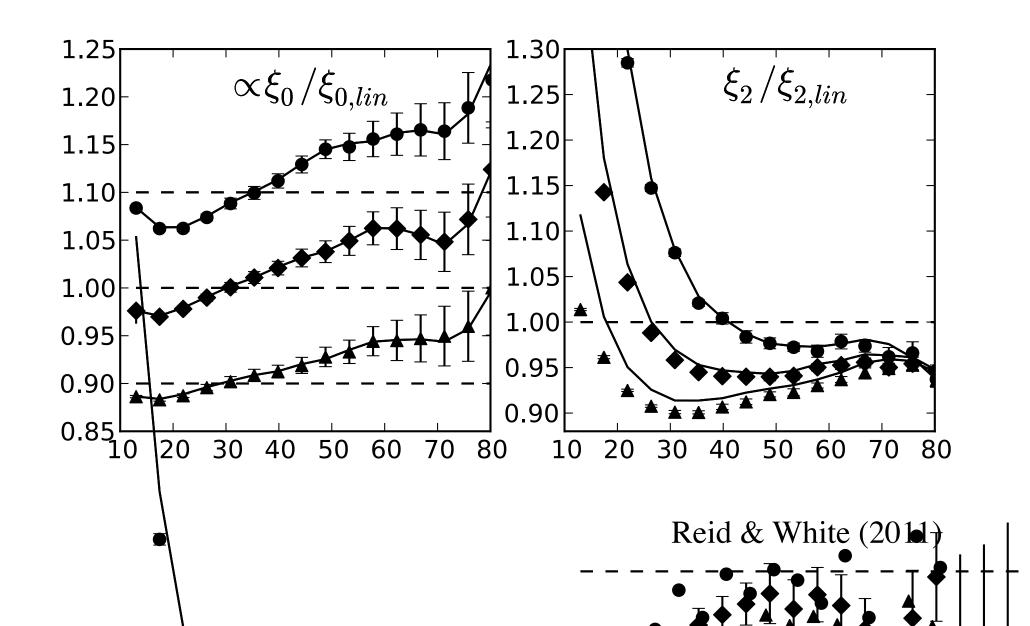


Halo samples

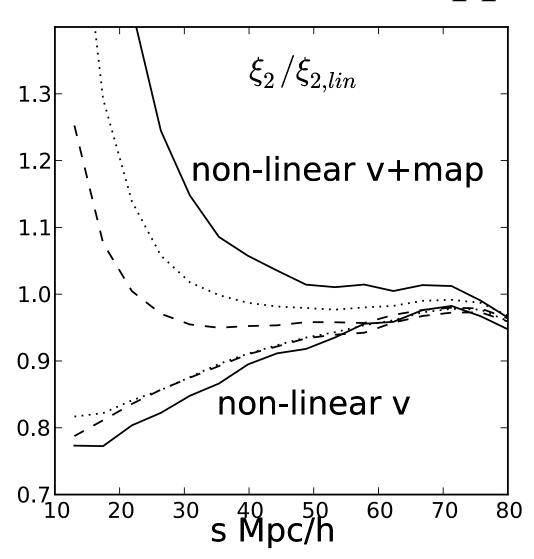
- We compare our theoretical models with 3 halo/galaxy samples taken from Nbody simulations.
- A total volume of 67.5 (Gpc/h)³

Sample	lgM	b	bLPT	n (10 ⁻⁴)
High	>13.4	2.67	2.79	0.76
Low	12.48-12.78	1.41	1.43	4.04
HOD	-	1.81	1.90	3.25

Testing the ansatz



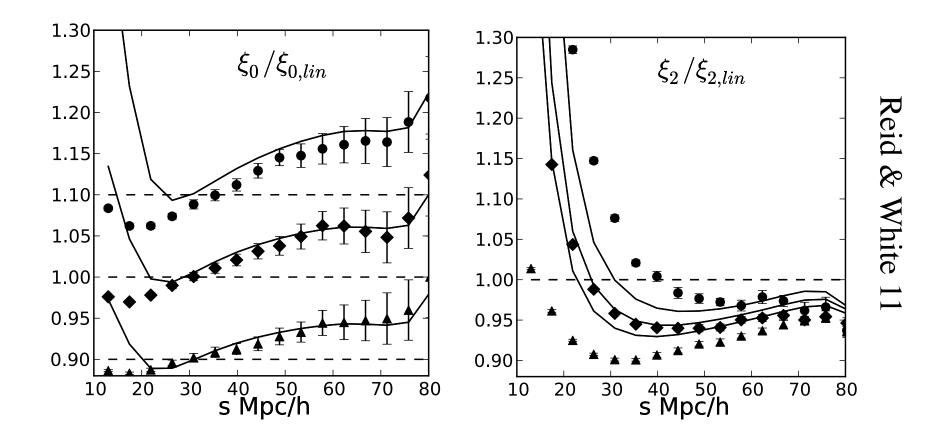
The mapping



Note, the behavior of the quadrupole is particularly affected by the non-linear mapping. The effect of non-linear velocities is to suppress ξ_2 (by ~10%, significant!). The mapping causes the enhancement. This effect is tracer/ bias dependent!

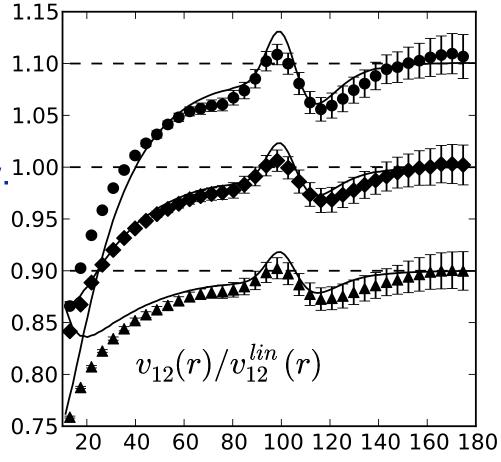
An analytic model

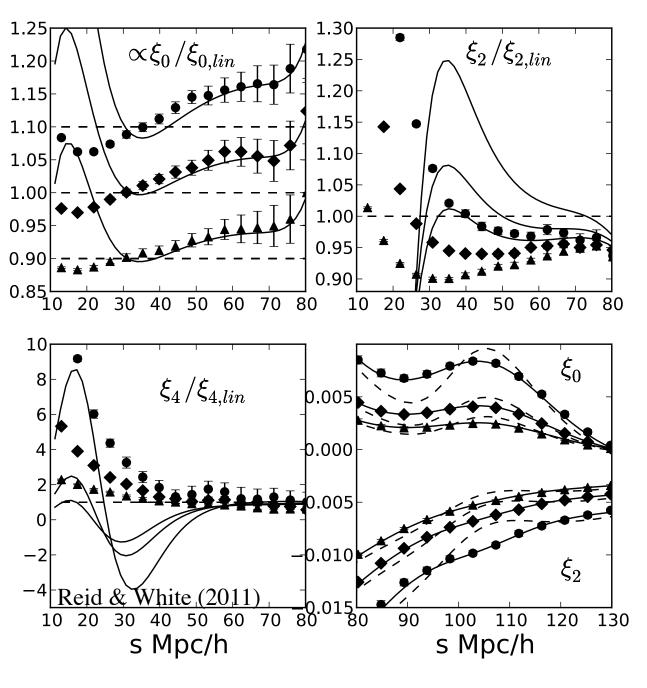
This has all relied on input from N-body. Can we do an analytic model? Try "standard" perturbation theory* for the v_{12} and σ terms ...



Many new SPT results

- Results for pair-weighted
 v₁₂ and σ, including
 bispectrum terms are new.^{1.00}
- Assume linear bias.
- Error in model is dominated by error in slope of v₁₂ at small r.





Perturbation theory can do a reasonable job on large scales, but breaks down surprisingly quickly.

Gaussian streaming model is better ... but still suffers from problems on small scales.

The b^3 term?

- One of the more interesting things to come out of this ansatz is the existence of a b³ term.
 - Numerically quite important when b~2.
 - Another reason why mass results can be very misleading.
 - But hard to understand (naively) from

$$1 + \xi^{s}(R, Z) = \left\langle \int dy \ (1 + \delta_1)(1 + \delta_2) \int \frac{d\kappa}{2\pi} e^{i\kappa(Z - y - v_{12})} \right\rangle$$

– Where does it come from?

Streaming model

 In the streaming model this term can be seen by expanding the exponential around s=r which gives a term

$$-\frac{d}{dy}\left[\xi \ v_{12}\right]$$

- Since $\xi \sim b^2$ and $v \sim b$ this term scales as b^3 .
 - More highly biased tracers have more net infall and more clustering.
- But, we "put" the v₁₂ into the exponential by hand ... we didn't derive it.
- Can we understand where this comes from ...?

Lagrangian perturbation theory

- A different approach to PT, which has been radically extended recently by Matsubara (and is *very* useful for BAO):
 - Buchert89, Moutarde++91, Bouchet++92, Catelan95, Hivon++95.
 - Matsubara (2008a; PRD, 77, 063530)
 - Matsubara (2008b; PRD, 78, 083519)
- Relates the current (Eulerian) position of a mass element, x, to its initial (Lagrangian) position, q, through a displacement vector field, Ψ.

Lagrangian perturbation theory

$$\delta(\mathbf{x}) = \int d^3q \, \delta_D(\mathbf{x} - \mathbf{q} - \mathbf{\Psi}) - 1$$

$$\delta(\mathbf{k}) = \int d^3q \, e^{-i\mathbf{k}\cdot\mathbf{q}} \left(e^{-i\mathbf{k}\cdot\mathbf{\Psi}(\mathbf{q})} - 1\right) .$$

$$\frac{d^2 \mathbf{\Psi}}{dt^2} + 2H \frac{d \mathbf{\Psi}}{dt} = -\nabla_x \phi \left[\mathbf{q} + \mathbf{\Psi}(\mathbf{q}) \right]$$

$$\mathbf{\Psi}^{(n)}(\mathbf{k}) = \frac{i}{n!} \int \prod_{i=1}^{n} \left[\frac{d^{3}k_{i}}{(2\pi)^{3}} \right] (2\pi)^{3} \delta_{D} \left(\sum_{i} \mathbf{k}_{i} - \mathbf{k} \right)$$

$$\times \mathbf{L}^{(n)}(\mathbf{k}_{1}, \dots, \mathbf{k}_{n}, \mathbf{k}) \delta_{0}(\mathbf{k}_{1}) \dots \delta_{0}(\mathbf{k}_{n})$$

Kernels

$$\mathbf{L}^{(1)}(\mathbf{p}_1) = \frac{\mathbf{k}}{k^2} \tag{1}$$

$$\mathbf{L}^{(2)}(\mathbf{p}_1, \mathbf{p}_2) = \frac{3}{7} \frac{\mathbf{k}}{k^2} \left[1 - \left(\frac{\mathbf{p}_1 \cdot \mathbf{p}_2}{p_1 p_2} \right)^2 \right]$$
 (2)

$$\mathbf{L}^{(3)}(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \cdots$$

$$\mathbf{k} \equiv \mathbf{p}_1 + \cdots + \mathbf{p}_n$$

Standard LPT

• If we expand the exponential and keep terms consistently in δ_0 we regain a series $\delta = \delta^{(1)} + \delta^{(2)} + \dots$ where $\delta^{(1)}$ is linear theory and e.g.

$$\delta^{(2)}(\mathbf{k}) = \frac{1}{2} \int \frac{d^3k_1 d^3k_2}{(2\pi)^3} \delta_D(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}) \delta_0(\mathbf{k}_1) \delta_0(\mathbf{k}_2)$$

$$\times \left[\mathbf{k} \cdot \mathbf{L}^{(2)}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}) + \mathbf{k} \cdot \mathbf{L}^{(1)}(\mathbf{k}_1) \mathbf{k} \cdot \mathbf{L}^{(1)}(\mathbf{k}_2) \right]$$

- which regains "SPT".
 - The quantity in square brackets is F₂.

$$F_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{5}{7} + \frac{2}{7} \frac{(\mathbf{k}_1 \cdot \mathbf{k}_2)^2}{k_1^2 k_2^2} + \frac{(\mathbf{k}_1 \cdot \mathbf{k}_2)}{2} \left(k_1^{-2} + k_2^{-2}\right)$$

LPT power spectrum

• Alternatively we can use the expression for $\delta_{\mathbf{k}}$ to write

$$P(k) = \int d^3q \ e^{-i\vec{k}\cdot\vec{q}} \left(\left\langle e^{-i\vec{k}\cdot\Delta\vec{\Psi}} \right\rangle - 1 \right)$$

- where $\Delta \Psi = \Psi(\mathbf{q}) \Psi(0)$. [Note translational invariance.]
- Expanding the exponential and plugging in for $\Psi^{(n)}$ gives the usual results.

BUT Matsubara suggested a different and very clever approach.

Cumulants

- The cumulant expansion theorem allows us to write the expectation value of the exponential in terms of the exponential of expectation values.
- Expand the terms $(\mathbf{k}\Delta\Psi)^N$ using the binomial theorem.
- There are two types of terms:
 - Those depending on Ψ at same point.
 - This is independent of position and can be factored out of the integral.
 - Those depending on Ψ at different points.
 - These can be expanded as in the usual treatment.

Example

- Imagine Ψ is Gaussian with mean zero.
- For such a Gaussian: $\langle e^{\Psi} \rangle = \exp[\sigma^2/2]$.

$$P(k) = \int d^3q e^{-i\mathbf{k}\cdot\mathbf{q}} \left(\left\langle e^{-ik_i\Delta\Psi_i(\mathbf{q})} \right\rangle - 1 \right)$$

$$\left\langle e^{-i\mathbf{k}\cdot\Delta\Psi(q)}\right\rangle = \exp\left[-\frac{1}{2}k_ik_j\left\langle\Delta\Psi_i(\mathbf{q})\Delta\Psi_j(\mathbf{q})\right\rangle\right]$$

$$k_i k_j \langle \Delta \Psi_i(\mathbf{q}) \Delta \Psi_j(\mathbf{q}) \rangle = 2k_i^2 \langle \Psi_i^2(\mathbf{0}) \rangle - 2k_i k_j \xi_{ij}(\mathbf{q})$$

Keep exponentiated, call Σ^2 .

Expand

Resummed LPT

The first corrections to the power spectrum are then:

$$P(k) = e^{-(k\Sigma)^2/2} \left[P_L(k) + P^{(2,2)}(k) + \widetilde{P}^{(1,3)}(k) \right],$$

- where $P^{(2,2)}$ is as in SPT but part of $P^{(1,3)}$ has been "resummed" into the exponential prefactor.
- The exponential prefactor is identical to that obtained from
 - The peak-background split (Eisenstein++07)
 - Renormalized Perturbation Theory (Crocce++08).
- Does a great job of explaining the broadening and shifting of the BAO feature in ξ(r) and also what happens with reconstruction.
- But breaks down on smaller scales ...

Beyond real-space mass

- One of the more impressive features of Matsubara's approach is that it can gracefully handle both biased tracers and redshift space distortions.
- In redshift space, in the plane-parallel limit,

$$\mathbf{\Psi} \to \mathbf{\Psi} + \frac{\widehat{\mathbf{z}} \cdot \dot{\mathbf{\Psi}}}{H} \ \widehat{z} = R \, \mathbf{\Psi}$$

- In PT $\Psi^{(n)} \propto D^n \Rightarrow R_{ij}^{(n)} = \delta_{ij} + nf \, \widehat{z}_i \widehat{z}_j$
- Again we're going to leave the zero-lag piece exponentiated so that the prefactor contains

$$k_i k_j R_{ia} R_{jb} \delta_{ab} = \left(k_a + f k \mu \hat{z}_a\right) \left(k_a + f k \mu \hat{z}_a\right) = k^2 \left[1 + f (f+2) \mu^2\right]$$

• while the $\xi(r)$ piece, when FTed, becomes the usual Kaiser expression plus higher order terms.

Beyond real-space mass

- One of the more impressive features of Matsubara's approach is that it can gracefully handle both biased tracers and redshift space distortions.
- For bias local in Lagrangian space:

$$\delta_{\text{obj}}(\mathbf{x}) = \int d^3q \ F\left[\delta_L(\mathbf{q})\right] \delta_D(\mathbf{x} - \mathbf{q} - \mathbf{\Psi})$$

we obtain

$$P(k) = \int d^3q \ e^{-i\mathbf{k}\cdot\mathbf{q}} \left[\int \frac{d\lambda_1}{2\pi} \frac{d\lambda_2}{2\pi} F(\lambda_1) F(\lambda_2) \left\langle e^{i[\lambda_1\delta_L(\mathbf{q}_1) + \lambda_2\delta_L(\mathbf{q}_2)] + i\mathbf{k}\cdot\Delta\Psi} \right\rangle - 1 \right]$$

- which can be massaged with the same tricks as we used for the mass.
- If we assume halos/galaxies form at peaks of the initial density field ("peaks bias") then explicit expressions for the integrals of F exist.

Peaks bias

- Expanding the exponential pulls down powers of λ .
- FT of terms like $\lambda^n F(\lambda)$ give $F^{(n)}$
- The averages of F' and F" over the density distribution take the place of "bias" terms
 - b₁ and b₂ in standard perturbation theory.
- If we assume halos form at the peaks of the initial density field we can obtain:

$$b_1 = \frac{\nu^2 - 1}{\delta_c}$$
 , $b_2 = \frac{\nu^4 - 3\nu^2}{\delta_c^2} \approx b_1^2$

Example: Zel'dovich

- To reduce long expressions, let's consider the lowest order expression
 - Zel'dovich approximation.

$$\mathbf{\Psi}(\mathbf{q}) = \mathbf{\Psi}^{(1)}(\mathbf{q}) = \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{q}} \frac{i\mathbf{k}}{k^2} \delta_0(\mathbf{k})$$

• Have to plug this into 1+ ξ formula, Taylor expand terms in the exponential, do λ integrals, ...

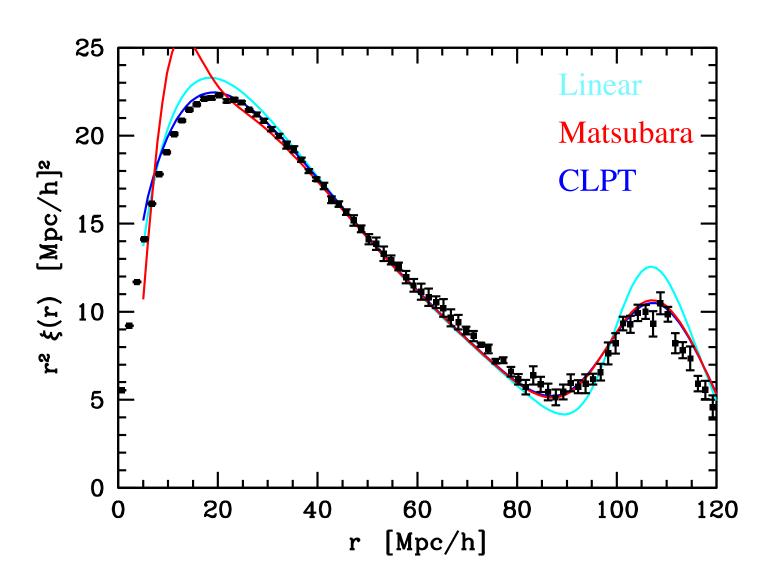
Example: Zel'dovich

One obtains

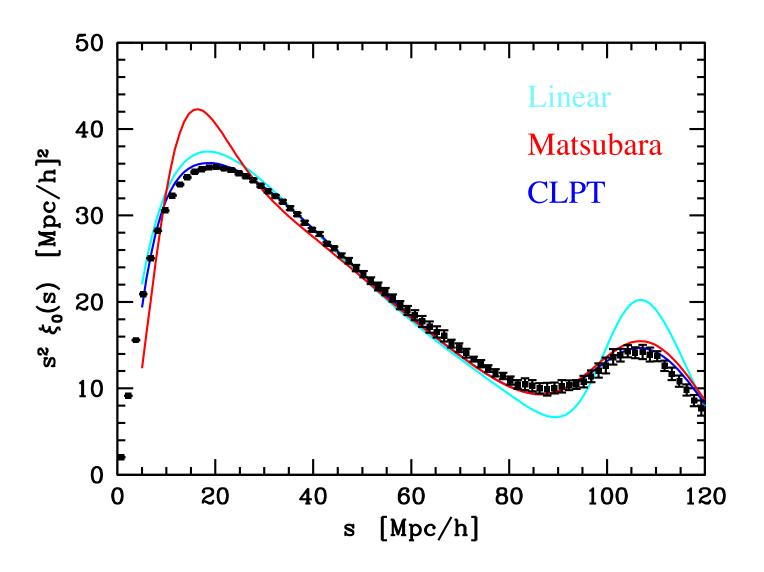
Convolution LPT?

- Matsubara separates out the q-independent piece of the 2-point function $<\!\!\Delta\Psi_i\!\!\Delta\Psi_i\!\!>$
- Instead keep all of $<\Delta\Psi_i\Delta\Psi_i>$ exponentiated.
 - Expand the rest.
 - Do some algebra.
 - Evaluate convolution integral numerically.
- Guarantees we recover the Zel'dovich limit as 0th order CLPT (for the matter).
 - Eulerian and LPT require an ∞ number of terms.
 - Many advantages: as emphasized recently by Tassev & Zaldarriaga

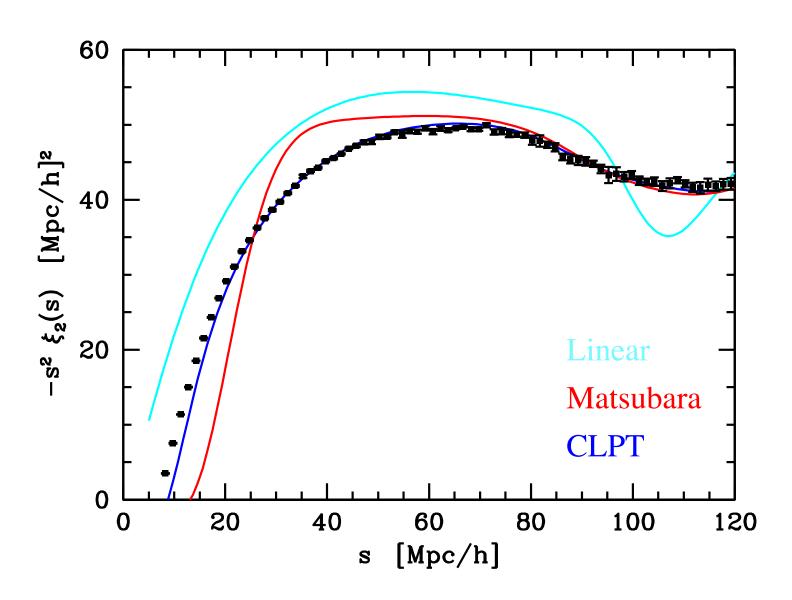
Matter: Real: Monopole



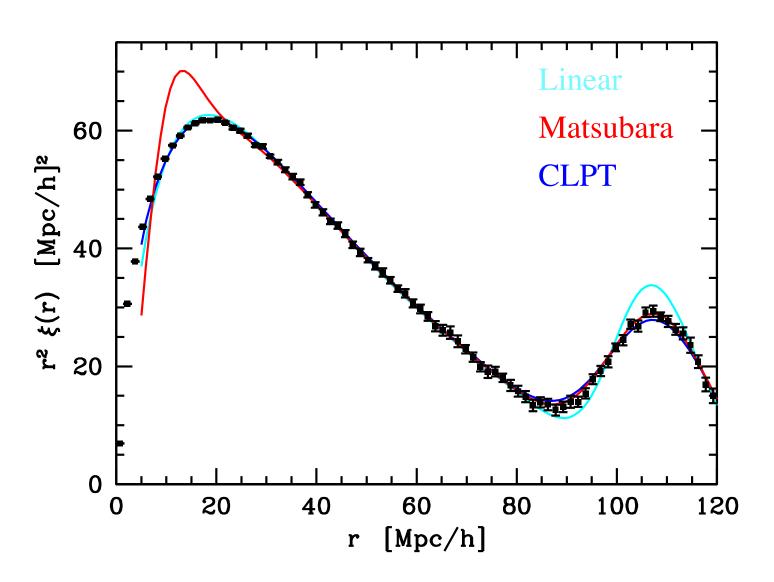
Matter: Red: Monopole



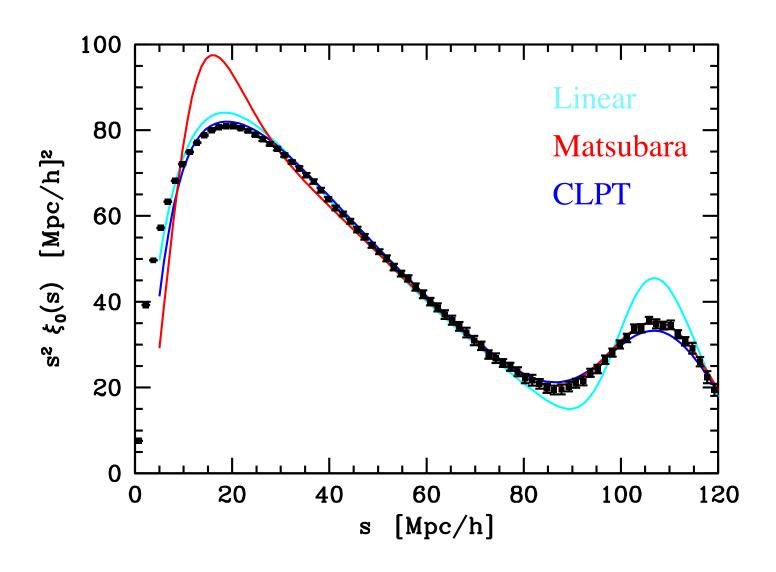
Matter: Quadrupole



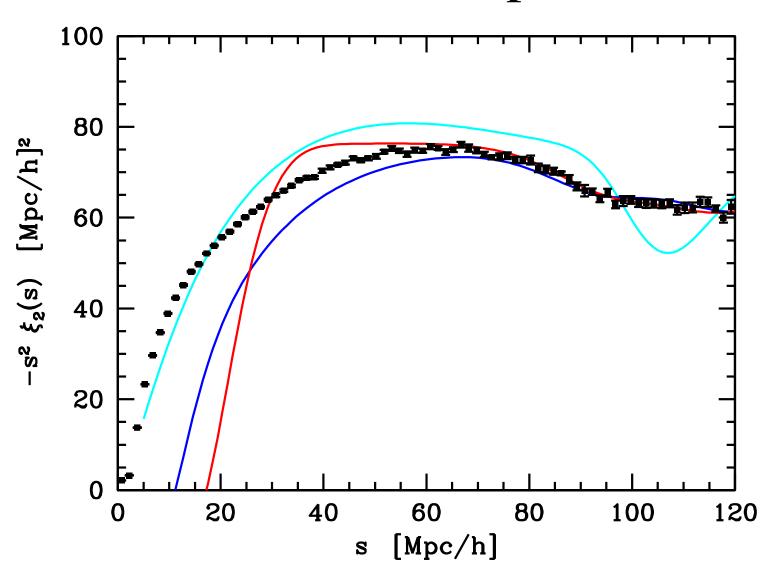
Halos: Real: Monopole



Halos: Red: Monopole



Halos: Quadrupole



A combination of approaches?

$$Z(r,J) = \int d^3q \int \frac{d^3k}{(2\pi)^3} e^{ik\cdot(q-r)} \int \frac{d\lambda_1}{2\pi} \frac{d\lambda_2}{2\pi} \tilde{F}(\lambda_1)\tilde{F}(\lambda_2)K(q,k,\lambda_1,\lambda_2,J)$$

$$K = \left\langle e^{i(\lambda_1\delta_1 + \lambda_2\delta_2 + k\cdot\Delta + J\cdot\dot{\Delta})} \right\rangle$$

$$1 + \xi(r) = Z(r,J=0) \equiv Z_0(r),$$

$$v_{12,\alpha}(r) = \frac{\partial Z}{\partial J_\alpha} \bigg|_{J=0} \equiv Z_{0,\alpha}(r),$$

$$D_{\alpha\beta}(r) = \frac{\partial^2 Z}{\partial J_\alpha\partial J_\beta} \bigg|_{J=0} \equiv Z_{0,\alpha\beta}(r)$$

... plus streaming model ansatz.

From halos to galaxies

- In principle just another convolution
 - Intra-halo PDF.
- In practice need to model cs, ss^(1h) and ss^(2h).
- A difficult problem in principle, since have fingers-of-god mixing small and large scales.
 - Our model for ξ falls apart at small scales...
- On quasilinear scales things simplify drastically.
 - Classical FoG unimportant.
 - Remaining effect can be absorbed into a single Gaussian dispersion which can be marginalized over.

Conclusions

- Redshift space distortions arise in a number of contexts in cosmology.
 - Fundamental questions about structure formation.
 - Constraining cosmological parameters.
 - Testing the paradigm.
- Linear theory doesn't work very well.
- Two types of non-linearity.
 - Non-linear dynamics and non-linear maps.
- Bias dependence can be complex.
- We are developing a new formalism for handling the redshift space correlation function of biased tracers.
 - Stay tuned!

The End