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Outline 

! The standard cosmological model and the CMB. 
–  Acoustic oscillations in the infant Universe. 

! Planck: mission. 
! Planck: cosmological parameters 
! Planck: comparison with other datasets. 
! Acoustic oscillations in the matter. 
! BOSS: cosmic sound “nearby” 
! Conclusions. 
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Standard cosmological model 
! The Universe is well described by 

– A spatially flat, Friedmann metric 
– whose dynamics are governed by General Relativity 
– and whose constituents are dominated by 

Ø radiation (ν and γ) at early times and 
Ø cold dark matter (CDM) and Λ at later times. 

!  The FRW metric has one free, scalar function of time 
known as the scale factor: a(t). 
– We often use an alternate convention, redshift, where 

a=(1+z)-1. 
– The log-derivative of a(t) is known as the Hubble 

parameter: H = dln(a)/dt 
– Within GR: H2~ρtot. 
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The cosmic microwave background 
! The entire Universe is filled with radiation in the form of a 

2.7K black-body. 
–  nγ = 411 cm-3, ργ = 4.64 1034 g/cm3 = 0.260 eV/cm3 

! This radiation is a relic of the hot, dense, early phase of the 
Universe (the hot-big bang). 

! The light travels to us from a “surface of last scattering” at 
z~1100 (when the Universe was 10-3 times smaller than 
today and only 380,000yr old). 
–  At this z the Universe was finally cold enough for protons to capture 

electrons to form neutral Hydrogen. 
–  Optical depth to photon scattering quickly drops from τ>>1 to τ<<1. 

! The radiation is almost the same intensity in all directions, 
but contains tiny fluctuations in intensity (or temperature) at 
the level of 10-4:  CMB anisotropy. 
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The cartoon 
! At early times the universe was hot, dense and 

ionized.  Photons and matter were tightly coupled by 
Thomson scattering. 
–  Short m.f.p. allows fluid approximation. 

! Initial fluctuations in density and gravitational 
potential drive acoustic waves in the bγ fluid: 
compressions and rarefactions. 

! These show up as temperature fluctuations in the 
CMB 

[harmonic wave]	
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! A sudden “recombination” decouples the radiation 
and matter, giving us a snapshot of the fluid at “last 
scattering”. 

 
! These fluctuations are then projected on the sky with 
λ~dlsθ or l~k dls 

! (We usually work in “angular Fourier space”, and 
decompose ΔT(θ,φ)=Σ alm Ylm(θ,φ) then use the alm). 

The cartoon 
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Angular power spectrum! 

First “compression”,	

at kcstls=π.  Density 
maxm, velocity null.	


First “rarefaction” 
peak at kcstls=2π	


Acoustic scale is set by the sound horizon at last scattering:  rs ~ cstls	


Smaller scales	
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Coupling is 
“tight” but 
not perfect.  
Photon 
diffusion 
damps 
power at 
small 
scales (Silk 
damping). 
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CMB encodes valuable information 

! The CMB spectrum depends upon the initial spectrum of 
perturbations (inflation?) and the conditions in the photon-baryon 
fluid prior to last scattering. 

! The rich structure in the spectrum, and the dependence on many 
cosmological parameters, provides a gold-mine of information if 
signal can be accurately measured and compared to precise 
theoretical predictions. 

! Basic inferences: 
–  From the narrow first peak we know that whatever “rang the bell” 

was sharp and of short duration, not a continuous driving. 
–  The fluctuations are dominated by large-scale density 

perturbations (not vorticity modes or gravity waves). 
–  The universe was not “weird” at z~103. 

! The most precise inferences come from comparing the observations 
to detailed theoretical predictions … 
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Planck mission 
! Planck is a 3rd generation space mission (COBE, WMAP) 

–  Like WMAP, Planck observes at “L2”. 

! It is part of ESA’s “Cosmic Visions” program. 
–  Launched in May 2009 along with the Herschel satellite. 
–  Stably and continuously mapping the sky since 13 August 2009. 

! It is the first sub-mm mission to map the entire sky with 
mJy sensitivity and resolution better than 10 arcmins. 
–  74 detectors covering 25GHz-1000GHz, resolution 30’-5’. 
–  Sensitivity is ~25x better than WMAP and resolution ~3x better. 
–  Expect 6x more modes and 12x lower noise per arcmin2. 

! Planck measures temperature anisotropy with accuracy 
set by fundamental astrophysical limits. 
–  The CMB spectrum is a band limited function. 
–  Planck is cosmic variance limited to l=103. 
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Ariane 5 lifts off with Herschel and Planck on board on 
14 May 2009 at 15:12:02 CEST. 

A picture-perfect launch! 
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The orbit 

Planck makes a map of the full sky every ~6 months.	
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Orbit 
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            30 GHz                           44 GHz                             70GHz	


100 GHz                       143 GHz                        217 GHz	


353 GHz                       545 GHz                          857 GHz	
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Foreground cleaned CMB map 
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The angular power spectrum 
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Parameter constraints: standard model 
Planck Planck+lensing Planck+WP

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022242 0.02217 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.11805 0.1186 ± 0.0031 0.12038 0.1199 ± 0.0027

100✓MC . . . . . . . . 1.04122 1.04132 ± 0.00068 1.04150 1.04141 ± 0.00067 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0949 0.089 ± 0.032 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9675 0.9635 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . . . 3.098 3.103 ± 0.072 3.098 3.085 ± 0.057 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6964 0.693 ± 0.019 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3036 0.307 ± 0.019 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8285 0.823 ± 0.018 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.45 10.8+3.1

�2.5 11.37 11.1 ± 1.1

H0 . . . . . . . . . . . 67.11 67.4 ± 1.4 68.14 67.9 ± 1.5 67.04 67.3 ± 1.2

109As . . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.19+0.12
�0.14 2.215 2.196+0.051

�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14094 0.1414 ± 0.0029 0.14305 0.1426 ± 0.0025

⌦mh3 . . . . . . . . . 0.09597 0.09590 ± 0.00059 0.09603 0.09593 ± 0.00058 0.09591 0.09589 ± 0.00057

YP . . . . . . . . . . . 0.247710 0.24771 ± 0.00014 0.247785 0.24775 ± 0.00014 0.247695 0.24770 ± 0.00012

Age/Gyr . . . . . . . 13.819 13.813 ± 0.058 13.784 13.796 ± 0.058 13.8242 13.817 ± 0.048

z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.01 1090.16 ± 0.65 1090.48 1090.43 ± 0.54

r⇤ . . . . . . . . . . . 144.58 144.75 ± 0.66 145.02 144.96 ± 0.66 144.58 144.71 ± 0.60

100✓⇤ . . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.00062

zdrag . . . . . . . . . . 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58

rdrag . . . . . . . . . . 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59

kD . . . . . . . . . . . 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14022 0.14009 ± 0.00063

100✓D . . . . . . . . . 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.00034

zeq . . . . . . . . . . . 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60

100✓eq . . . . . . . . . 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011

rdrag/DV(0.57) . . . . 0.07130 0.0716 ± 0.0011 0.07207 0.0719 ± 0.0011 0.07126 0.07147 ± 0.00091

Table 1. Cosmological parameter values for the minimal 6 parameter ⇤CDM model. Columns 2 and 3 give results for Planck
temperature data alone, columns 4 and 5 are combined with Planck lensing, and Columns 6 and 7 include WMAP polarization
(WP) at low multipoles. We give best fit parameters as well as 68% confidence limits for constrained parameters. Parameters in bold
have flat priors, other parameters are derived.
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Parameter constraints 
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The acoustic scale 
! The angular size of the acoustic scale is now determined 

to 0.07% (second best known number in cosmology!) 
–  θ=1.19355 ± 0.00078 degrees (68% CL). 

! In ΛCDM models this defines a 0.3% constraint 
– Ωm h3.2 (Ωb h2)-0.55 = 0.7218 ± 0.0025 (68%CL) 

! Projecting onto a 2D subspace we have 
– Ωm h3 = 0.09595 ± 0.00058 
–  High Ωm = low H0 
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Reason … and implications 
(for the experts) 

! The acoustic scale is a ratio: rs/dLS 

 

! For rs, dominated by high-z: H(z)~√(ρm+ρr). 
–  Increasing ρm will decrease rs. Decrease is softer than √ρm. 
–  So dLS must also decrease, more softly than √ρm 

! For dLS, dominated by low-z: H(z)~√(ρm+ρDE). 
! But ρm+ρDE = ρcrit~H0

2: so need to lower H0. 

! Note that since ρcrit has gone down and ΩDE has gone 
down, ρDE has gone down ~20%. 

dLS =

Z zLS

0

dz

H(z)
rs =

Z tLS

0
cs(1 + z) dt =

Z 1

zLS

cs dz

H(z)
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The Hubble uncertainty principle 
Within the ΛCDM 
model, the Planck 
data prefer a lower 
expansion rate (at 
late times) than that 
inferred from the 
traditional distance 
scale based on Type 
Ia SNe and local 
calibrators. 
 
This is driven by 
Planck’s preference 
for a higher Ωm. 
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So why raise Ωm? 

! Actually, it’s kind of complicated … 
–  … but the basic physical picture can be sketched out. 

! Planck sees more power at high-l, and smoother peaks, 
than the “old” best-fit model predicts. 

! Raising ρm will lower the first few peaks (c.f. those at 
higher-l) and increase the amount of gravitational lensing. 

! Increasing the overall normalization at the same time 
(and some other things) gives us more power at high-l, 
smoother peaks but overshoots the low-l data a bit. 
–  WMAP got more of its constraint from lower l, so preferred a 

slightly higher H0 (though it was moving to lower H0 with time). 
–  SPT+ACT didn’t have the dynamic range to see these effects 

alone and inter-calibration with WMAP was “noisy”. 
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Zoom in … 

3/23/13 3:55 PM

Page 1 of 1file:///Users/mwhite/Data/Planck/ps_comp_zoom_1.svg

3/23/13 3:55 PM

Page 1 of 1file:///Users/mwhite/Data/Planck/ps_comp_zoom_2.svg
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Baryon loading and the potential envelope 
! Baryons weight the photon-baryon fluid making it easier to 

fall into a potential well and harder to “bounce” out. 
–  Baryon loading enhances the compressions and weakens the 

rarefactions, leading to an alternating height of the peaks. 

! At earlier times the photon-baryon fluid contributes more to 
the total density of the universe.  The effects of bγ self-
gravity enhance the fluctuations on small scales. 
–  Since the fluid has pressure, it is hard to compress and infall into 

potentials is slower than free-fall. 
–  Because the (over-)density cannot grow fast enough, the potential is 

forced to decay by the expansion of the universe. 
–  The photons are then left in a compressed state with no need to fight 

against the potential as they leave -- enhancing small-scale power.  
Since the decay is timed to the oscillation, this is like a resonant 
driving! 

Hu & White (1996,1997)	
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The matter density and the higher peaks 
! The CMB anisotropies are damped at small angular scales 

by photon diffusion.  Well understood! 
! Removing this shows the effects of baryons/potential decay.  

Peak modulation 
by baryon loading.	


Boost by potential 
decay (Θ+Ψ+RΨ).	


DM stabilizes the 
potentials: more 
DM = less boost.	
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Consistency with other data 

! The Planck data are consistent with the predictions of the 
simplest ΛCDM models.  

! Within the framework of such models we can compare to a 
wide variety of other astrophysical/cosmological datasets. 
– Primordial nucleosynthesis 
– Large-scale structure (shape of power spectrum). 
– Baryon Acoustic Oscillations (distance scale). 
–  Redshift-space distortions. þ 
–  Type Ia SNe. þ☐ 
–  Cosmic shear. ý 
–  Counts of rich clusters of galaxies. ý☐þ 
–  Direct measures of H0. ýþ 
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Excellent agreement with BBN! 
0.
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0.

26
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P Aver et al. (2012) Standard BBN
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y D
P

Iocco et al. (2008)

Pettini & Cooke (2012)

Planck+WP+highL

This test 
involves all of 
the known laws 
of physics: 
agreement is a 
stunning 
testament of 
“Universal” laws 
of nature! 
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Power spectrum shape comparison 

The predicted 
power 
spectrum is in 
excellent 
agreement 
with that seen 
in the SDSS 
(Reid++). 
 
The shape is 
well 
constrained 
by the CMB. 
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Baryon oscillations in P(k) 

! We now have convincing evidence for acoustic 
oscillations in the baryon-photon fluid in the 
infant Universe. 

! Since the baryons contribute ~15% of the total 
matter density, the total gravitational potential is 
affected by the acoustic oscillations with scale 
set by s. 

! This leads to small oscillations in the matter 
power spectrum P(k). 
– No longer order unity, like in the CMB, now 

suppressed by Ωb/Ωm ~ 0.1 
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Baryon (acoustic) oscillations 
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In configuration space 

! In configuration space we measure not power 
spectra but correlation functions 
– FT[ <δk

2> ] = ξ(r) = <δxδx+r> 
! A harmonic sequence would be a δ-function in r, the 

shift in frequency and diffusion damping broaden 
the feature. 

Acoustic feature at 
~100 Mpc/h with 
width ~10 Mpc/h	

(Silk scale)	
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Acoustic signal in galaxy surveys 
! If the probability of forming a galaxy increases in regions 

of increased matter density then the correlations we just 
computed should show up in the statistics of the galaxy 
distribution as well. 

! The peak in ξ(r) shows up as an excess of pairs of 
galaxies, above the broad-band expectation, at 
~100Mpc/h. 
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Eisenstein et al. (2005) 
detect oscillations in 
the SDSS LRG ξ(r) at 
z~0.35!  Knowing s 
determines D(z=0.35).	


About 10% of the way 
to the surface of last 
scattering!	


Constraints argue for 
the existence of DE, but 
do not strongly 
constrain its properties.	


Another prediction verified!! 
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BOSS BAO detection: Anderson++12 
(BAO detected at >5σ in both ξ and P)	


ξ	


We scale a template by α so that  DV /rs = ↵(DV /rs)fid
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BAO detection: Anderson++12 
(BAO detected at >5σ in both ξ and P)	
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Distance scale comparison: BAO 

Acoustic 
oscillations 
at z~1100 
and z<1 tell 
the same 
story about 
the distance 
scale: 
ΛCDM! 
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nd
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n+
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Precision cosmology 
! With the Planck data, very few degeneracies remain. 
! Biggest remaining: the angular diameter distance/

acoustic size degeneracy. 
– Only weakly broken by non-acoustic/higher-order 

effects, often in a model-dependent manner. 
! Adding BAO data essentially breaks this last degeneracy 

by allowing comparison of z~103 with z<1. 
! For constraints on curvature, mν or DE, adding BAO data 

dramatically improves constraints: 
– Ωk = -0.0010 ± 0.0065 (95%) 
– Σmν<0.23 eV (95%)  
– w0=-1.04±0.7 (95%), wa<1.32 (95%) 
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BOSS progress-to-date 

BOSS DR9:	

3,275 sq. deg. and	

264,283 galaxies.	


BOSS DR11:	

8,500 sq. deg. and 
1.2M galaxies. 	
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BOSS DR11: approaching 1% 

DR11 represents 
most of the data 
BOSS will 
gather, though 
this plot shows 
only the CMASS 
sample. Future 
releases will 
include various 
analysis 
improvements 
plus z evolution. 

Don’t even need the line to “guide the eye” anymore! 
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Conclusions 
! The Planck mission has been stunningly successful. 
! Impressive confirmation of the standard model. 

–  Precise constraints on model and parameters. 
Ø 6σ deviation from scale-invariance, 0.07% measurement of θs. 
Ø Strong constraints on inflationary models. 
Ø Tight limits on deviations from base model. 

–  Some indications of internal and external tensions, but with only 
modest statistical significance. 

! The acoustic oscillation program also allows precision 
cosmology at lower z: BOSS is closing in on a percent-level 
constraint on distance out to z~0.7. 
–  BOSS is ahead of schedule and should finish data taking next Spring. 
–  All indications are we will achieve our primary science goals, in 

addition to many others we didn’t think of when we began … 
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All right. But apart from the sanitation, the medicine, education, wine, 
public order, irrigation, roads, the fresh water system, and public 
health . . . 

What have the Romans has the harmonic oscillator ever done for us? 

Reg, spokesman for the People’s Front of Judea 
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The End 


