Cosmic Web, IGM tomography and *Clamato*

Martin White
with

Quasar

z = 2.1

z = 2.5

z = 2.6

505 Mpc
The cosmic web

- All of the structure in our Universe arose from small, initially Gaussian (quantum) fluctuations (generated during inflation) amplified by gravitational instability in a (cold) dark matter dominated Universe.
- A natural outcome of this process, when viewed on Mpc scales, is a beaded filamentary network of voids, sheets, filaments and knots known as the cosmic web.
- All of galaxy and structure formation occurs in this context!
- What are the observational requirements for making a map of the cosmic web at high z?
The physics of gravitational instability, the initial fluctuation spectrum and the cosmic constituents provide natural definitions for “large”, “dense”, “representative”.

- Natural length scale set by the horizon at matter-radiation equality ($k_{eq} \simeq 0.0103(1)\, \text{Mpc}^{-1}$, i.e. 100 Mpc).
- Amplitude of fluctuations (power spectrum) sets requirements on tracer density.

Can we make a map of the large-scale structure with Mpc resolution over a representative volume of the Universe ($10^6 \, h^{-3}\text{Mpc}$) with existing telescopes?

Can we survey massive volumes to find extreme objects (protoclusters, voids, ...)?

Can we measure the “environment” of galaxies at high z?
Galaxy redshifts at $z \approx 0$ and $z \approx 2.5$

Locally we do cosmography with galaxy redshift surveys – but redshifts get expensive at high z!

Note we’ve isolated a thin slice in z
Galaxy redshifts at $z \approx 0$ and $z \approx 2.5$

Locally we do cosmography with galaxy redshift surveys – but redshifts get expensive at high z!

Note we’ve isolated a thin slice in z
Galaxy density

- Ability to map LSS depends on galaxy separations.
- SDSS main sample ($z < 0.2 - 0.3$) has a mean inter-galaxy separation of $\sim 8 \, h^{-1}\text{Mpc}$.
- At $z = 0.5$ need to go to $I_{AB} = 22.5$ to reach the same mean separation.
- At $z = 1.0$ need $I_{AB} = 24.2$.
- At $z = 2.0$ need $I_{AB} = 25.7$.
- Direct mapping of $z > 1$ LSS at Mpc resolution is a 30 m telescope project!

Galaxies aren’t the only tracer of large-scale structure: if we use HI we get line-of-sight “for free”.
Source luminosity functions

With the Lyα forest we get the line-of-sight sampling “for free”, so we just need to get the transverse sampling high enough. To increase the sightline density we need to go beyond QSOs as backlights. Beyond $g \sim 22 - 23$ LBGs dominate over QSOs.

Exponential increase in sightline density below $g \sim 23$!
By 24th magnitude sources are separated by arcminutes on the sky.
Requirements?

- The standard in the field of IGM studies is to work with very high S/N spectra at high resolution.
- BOSS taught us that you can get a lot of information from low resolution spectra with low S/N – if you have a lot of them!
 - We’re closer to measuring a “mean absorption” than individual absorption features.
- Moderate resolution and S/N means that what looks like 30 m class science can be done (now!) with a 10 m!

How well can you do with $O(10^3)$ sightlines per deg2 at $S/N \sim \text{few}$ per Å? Look for structures coherent over Mpc scales ...
Protocluster finding

Stark et al. (2015a)
Void finding

It is also possible to find large underdensities — in fact this is somewhat easier since voids aren’t really empty, just underdense in galaxies (dots in left panel).

Stark et al. (2015b)
Completeness and purity

- Stark et al. (2015a, 2015b) study the counts, profiles, radii, etc. of $z \approx 2.5$ protoclusters and voids as seen in Lyα tomography.
- Find high completeness ($> 75\%$) and purity (90%) for tomographically selected samples of massive ($> 3 \times 10^{14} \, h^{-1} M_\odot$) cluster progenitors for sightline separations at or better than $4 \, h^{-1} \text{Mpc}$.
- Even sightline separations above $10 \, h^{-1} \text{Mpc}$ can be used to find the largest, earliest assembling protoclusters.
- Find similarly good completeness and purity for voids with radii $> 6 \, h^{-1} \text{Mpc}$. We estimate $\sim 10^2$ such voids per $1 \, \text{deg}^2$ at $z = 2.5$.
CLAMATO

COSMOS Ly-\textit{Al}pha M\textit{apping} A\textit{nd} T\textit{O}mography

- Survey to do Ly\textalpha{} forest tomography in the central 1\,deg2 of the COSMOS field.
 - Overlaps CANDELS/3D-HST. Allows study of colors, morphology, SF rate, AGN activity, etc., as a function of large-scale environment.
 - Study CGM in protocluster foregrounds.
 - Improved photo-z for galaxies in COSMOS.
 - Cosmic web classification (as well as e.g. GAMA at low z)
 - Survey for protoclusters and voids.

- Need 1\,deg2 in order to sample large structures, like protoclusters and voids.

- Goal: \((60\,h^{-1}\text{Mpc})^2 \times 300\,h^{-1}\text{Mpc} \sim 10^6\,h^{-3}\text{Mpc}^3\).

- Survey in progress ...
 - Currently have 124 sightlines.
 - Mean separation 2.5\,\(h^{-1}\text{Mpc}\).
 - Lee et al. (2014ab, 2016)
CLAMATO: Current status

Contours of the flux (overdensities are more blue) in our current data set ($18 \times 24 \times 340 \, h^{-1}\text{Mpc}$). Slices are placed at the redshifts of previously known proto-clusters.
Protocluster Candidate: $z = 2.44$

Diener et al. (2015; LBG) and Chiang et al. (2015; LAE).

Lee et al. (2016): See a large overdensity in our absorption map at high significance, correlated with LBG and LAE overdensities. Comparison with sims gives $M(z = 0) \simeq (3 \pm 1.5) \times 10^{14} \, h^{-1}\text{Mpc}$ (Virgo). Possible fragmentation into two $z \simeq 0$ clusters.
Protocluster Candidate: $z = 2.47$

Casey et al. (2015), Hershel sub-mm overdensity (also seen in LBGs).
Protocluster Candidate: $z = 2.51$

X-ray detected (proto-)cluster: Wang et al. (2016)
Joint fitting & Sampling

We have implemented a high-dimensional minimization and sampling scheme that allows us to generate (Gaussian) initial conditions which (when evolved and turned into Lyα flux) are consistent with the observed data and noise model.

We can use these to run constrained N-body simulations, jointly fit Lyα and galaxy data sets, and propagate errors consistently.
Conclusions

- IGM tomography is ‘ideal’ for measuring large-scale environments of galaxies and QSOs.
- Map LSS and decompose into filaments, sheets and halos.
- Medium scale 3D Lyα clustering.
- Cross-correlations.
- Improve photo-zs of galaxies using topology.
- From such a map ideally want to look for large, coherent objects spanning Mpc
 - Protoclusters
 - Voids

Clamato is underway, and preliminary indications are very promising!
The End!
Backup Slides
Protocluster Properties

\[\sigma = 5.1 \]

\[\sigma = 5.6 \]
Protocluster Completeness and Purity

![Graph showing protocluster completeness and purity across different mass groups and distances.](image-url)
Voids at high z

Voids counts at $z = 2.5$

Synergistic with JWST-NIRSPEC to study sub-L_\star void galaxies at $z \approx 2 - 3$.
Technical details

- Program on Keck-I/LRIS-B (4′ × 7′ FOV)
- Covers central 0.8 deg² in 90 pointings.
- Nominal limit $g = 24.5$ (about 25 per mask) with 3 hr exposures.
- Yields 10^{-15} targets with proper z and S/N for reconstructing the $2.2 < z < 2.5$ Lyα forest.
Ly\(\alpha\) forest tomography

With the Ly\(\alpha\) forest we get the line-of-sight sampling “for free”, so we just need to get the transverse sampling high enough.