Cosmology at high redshift: a probe of fundamental physics

Martin White

(UC Berkeley, LBNL)

Nagoya, November 2024

Wither cosmology?

We are cursed/blessed with a "standard model" of cosmology:

- ▶ "The 6-parameter ΛCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters." Planck18-I
- ▶ Despite its incredible success, at a fundamental level ΛCDM "makes no sense". It has 'strange constituents' (Λ and CDM!) and poorly understood epochs (e.g. inflation).
- \blacktriangleright It's surely (?) only a phenomenological model ... that will be replaced by a more complete understanding.
- ▶ Stress testing this model, and seeing what breaks, is a primary focus of current research!
- \triangleright One bright spot we are entering the golden era of cosmological surveys, and are nowhere near exhausting the information we can access.

Tensions in the current model

Not everything is rosy in the land of ΛCDM – "tensions" (Hubble tension, S_8 /growth tension, ...)

- \triangleright These tensions are the focus of a lot of effort in the field!
- \blacktriangleright The evidence is not as robust as we'd like, but they resist 'easy' solution.
- \blacktriangleright They have only arisen as we've shrunk the error bars: "precision" cosmology.
	- \blacktriangleright 'Hubble tension' and 'growth tension' represent $\mathcal{O}(10\%)$ shifts in parameters.
	- ▶ Seeing such things at $> 5 \sigma$ requires $\sigma \simeq 1-2\%$

Since the model is working "pretty well" any signatures of BSM physics or deviations from ΛCDM are likely to be subtle ...

Firm prediction of ΛCDM: growth of LSS

- ▶ Between $z \simeq 10^3$ and today, fluctuations grow by $\sim 10^3$.
- ▶ GR+ΛCDM predicts growth very precisely when conditioned on the CMB.
- ▶ Marginalizing over unknown parameters, growth is predicted to 1.1% vs. z (dominated by m_{ν} uncertainty).

Is GR+ΛCDM right?

[Along the way test gravity model, expansion history, contents, ...]

Structure at high z!

Proof of principle that we can trace large-scale structure at high z with galaxies and lensing – and $\approx 300 \deg^2$ of galaxy data from Subaru is worth a "full sky" QSO catalog!

Opportunity

To really move into the precision era, however, we need to move to 3D, i.e. a spectroscopic survey!

- ▶ Recent advances in detectors and experimental techniques have made it feasible to dramatically extend spectroscopic surveys with 'modest' cost.
- \triangleright This opens the possibility that spectroscopic galaxy surveys could surpass even the CMB as a probe of fundamental physics.
- ▶ Reorients spectroscopic surveys away from "DE FOM".
	- ▶ inflation, non-Gaussianity, parity violation, cosmological collider, primordial features, axions, light relics, dark radiation, neutrino masses and interactions, dark matter, ...

See Haruki Ebina's talk for detailed forecasts ...

A spectroscopic roadmap

This opportunity has been recognized by the community, who are supportive of a roadmap towards a "Stage V" spectroscopic survey that includes a pathfinder (DESI-2) and a future facility:

Spec-S5, holds great promise to advance our understanding and reach key theoretical benchmarks in several areas: inflationary physics via the statistical properties of primordial fluctuations, late-time cosmic acceleration, light relics, neutrino masses, and dark matter $-$ P5 report (Murayama).

Open the precision frontier!

Science case for Stage V

The details of this science case have been discussed in a number of meetings, white papers and published papers. I can also highly recommend the talks linked from the websites of recent conferences on this topic:

- ▶ New Physics from Galaxy Clustering I <https://indico.cern.ch/event/1192722/>
- ▶ New Physics from Galaxy Clustering II <https://indico.cern.ch/event/1308028/>
- ▶ Fundamental Physics from Future Spectroscopic Surveys <https://indico.physics.lbl.gov/event/2769>
- ▶ New Physics from Galaxy Clustering III <https://indico.cern.ch/event/1375290>

Opportunity

What should Stage V look like?

In the interests of time, I will focus on one of the science cases that a future spectroscopic survey could enable. Such a facility will be uniquely powerful though, and a complete program would include other science cases as well, in cosmology and elsewhere.

Maximizing S/N

Want to maximize the S/N for new, BSM, physics

- \triangleright There are many possible extensions to our SM (Λ CDM+GR). ▶ See e.g. "New physics from galaxy clustering" workshop series.
- ▶ None are more compelling than others.
- \blacktriangleright If theory can't give us guidance, maybe phenomenology can?
	- 1. Work where inference is clean.
	- 2. If you don't know how to maximize S , then minimize $N!$
- \triangleright Design an experiment that is capable of investigating proposed solutions to existing anomalies while being sensitive to a broad range of BSM physics.

Push to higher redshift, in the epochs before cosmic noon $(z \approx 2)!$

Standard ruler spectrum

Moving to higher z gives us:

- 1. Fundamental mode moves to lower k (larger volume).
- 2. Non-linear scale moves to higher k (less evolved).
	- ▶ Get "unprocessed" information from the early Universe.
- 3. Longer lever arm in time.
- 4. Large dynamic range in scale where we have highly precise measurements of $\delta(k)$.
- 5. We're sensitive to anything that deviates from "boring" spectra (could be primordial, could be bias, could be evolution, could be new interactions, ...)

LSS at high-z offers many of the advantages of CMB anisotropy!

The big picture $-$ standard ruler spectrum!

Tracers of LSS at $2 < z < 6$

How can we trace large-scale structure at $z > 2$?

\triangleright CMB lensing (plus tSZ, kSZ, ...).

 \blacktriangleright A natural biproduct of surveys aimed at r.

- \triangleright By probing the matter field we get an "unbiased" tracer.
- ▶ By using relativistic particles we probe both metric potentials.
- ▶ Next-generation CMB experiments capable of dramatically improving on the current state of the art are already funded and in construction with even better instruments proposed!

\blacktriangleright Hi-z galaxies (LBGs and LAEs)

- ▶ Dropout, or Lyman Break Galaxy (LBG) selection targets the steep 912Å break in an otherwise 'flat' spectrum.
- \triangleright Selects massive, star-forming galaxies (tend to have high b).
- ▶ Some of these have bright emission lines (e.g. LAEs), allowing very efficient redshifting. Tend to have lower b.
- \blacktriangleright The IGM ... in galaxy spectra (Ly α tomography).

Learning on the job

One of the advantages of large spectroscopic surveys is that the same instrument can take spectra of many kinds of targets – optimize the science return.

- ▶ Different science cases have different drivers.
- ▶ For cosmology, we have accurate forecasts allowing survey optimization.
- ▶ High and low bias tracers (LBGs and LAEs) are good for different science (e.g. f_{NL}^{loc} , x-correlation vs. RSD) – the combination allows new approaches to clustering analysis (multi-tracer, density split statistics, h.o. moments, ...).

Need data to allow efficient target selection!

See Anand Raichoor's talk for more details ...

Conclusions

We are in the midst of the "golden age of cosmological surveys".

- ▶ DESI, Euclid, SPHEREx, PFS, Rubin, Roman, ..., Simons, S4, ... will keep us busy for some time!
- \triangleright The case for future spectroscopic surveys targeting "high z" is strong.
	- ▶ Long lever arms in scale and time where errors are small.
- \triangleright We need to be planning for this now!
- ▶ We can optimize our spectroscopy for our science case.
- \triangleright We need to be able to efficiently select targets.
- ▶ These same data allow a 'downpayment' on DESI-2 or Stage V science through projected clustering and cross-correlations – if calibrated with a small amount of spectroscopc follow-up.

The End!

Implications of "special selections"

Redshifts > 2 are a long way away, and we're planning to select special sub-populations of objects.

- ▶ Within the context of PT, all objects are just biased tracers of the matter field. Special selection \Rightarrow implications for bias.
- ▶ 'Break' in the halo mass function, $M_{h,*}$, shifts to smaller masses at high z.
- ▶ Large d_L means even faint galaxies are very luminous, e.g. high M_{\star} or SFR.
- ▶ Bias tends to be large, and therefore scale-dependent.
- ▶ Satellite fractions tend to be low (we're on the steeply falling part of the halo mass function), suggesting smaller FoG.
- \triangleright Stochastic terms smaller than we're used to at lower z for fixed b (since $\bar{n} \propto \bar{\rho}/M_{h,\star}$).

Bias expansion

What implications does this have?

- ▶ High bias can be a boon or a curse
	- Higher S/N in the monopole, more sensitive to f_{NL}^{loc} , x-correlations, ...
	- ▶ Smaller RSD, so one important "protected by symmetry" signal is "lost"
- ▶ There's no problem, in principle, in going to higher order in the bias expansion – but we need to worry about degeneracies, projection effects, loss of constraining power.
	- ▶ Would we need simulation-based priors?
	- ▶ What measurements would we use to validate them?

Scale-dependent bias: LBGs

Scale-dependent bias: LBGs

Wilson+19

Scale-dependent bias: LBGs

Lyman- α emitters (LAEs)

White+24

Scale-dependent bias: LAEs

For the LAEs, with lower bias, these effects are much reduced.

White+24

Line-of-sight and RT

If we want low bias, that's probably faint galaxies so we need 'strong' lines to have decent redshift success rate.

- \blacktriangleright Ly α is a resonant line, so strongly affected by radiative transfer (RT).
- \triangleright RT modulates the galaxy selection depending upon local density and (line-of-sight) velocity divergence.

 \blacktriangleright These are key signals for us!

- \blacktriangleright How strongly is currently under debate
	- \blacktriangleright Zheng + 11 argue for a large effect.
	- \triangleright Behrens + 18 claim that this is due to poor resolution in the older simulation. (If gas very dense where $Ly\alpha$ is emitted, random walks more in frequency space before leaving the galaxy.)
- \blacktriangleright This plays havoc with our ability to constrain some parameters (Ebina+24)
- \triangleright We know the physics can we "break this degeneracy" using other measurements?

Lots of volume!

For a highly biased sample (neglect RSD)

$$
\frac{\Delta P(k)}{P(k)} \approx \sqrt{\frac{2}{N_k}} \left[1 + \frac{1}{\bar{n}P} \right] = \frac{2\pi}{\sqrt{Vk^3 \Delta \ln k}} \left[1 + \frac{1}{\bar{n}P} \right]
$$

For 18K sq.deg. from 3.0 $<$ z $<$ 3.5 we have $V =$ 34.5 $h^{-3} \rm{Gpc^3}$.

Assuming 50% success for m_{UV} < 24.5 u-dropouts, $\bar{n}P(k = 0.1) \approx 3$, $\bar{n}P(k = 0.3) = 0.5$ and $\bar{n}P(k = 0.5) = 0.1$. This implies:

$$
\frac{\Delta P}{P} = 0.2\% \quad \text{at} \quad k \simeq 0.3 \, h \, \text{Mpc}^{-1} \quad \text{with} \quad \Delta \ln k = 0.1
$$

and $\langle 1\%$ over more than 1.5 dex in scale (per Δ ln $k = 0.1$).