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“A man grows stale if he works all the time on insoluble 
problems, and a trip to the beautiful world of one dimension will 

refresh his imagination better than a dose of LSD.”
 -- Freeman Dyson



Motivation
•  There has been a great deal of work recently on 

(cosmological) perturbation theory. 
–  New approaches, new resummation schemes, new 

renormalization techniques borrowed from QFT. 
–  Growing appreciation of the uses and limitations of “standard 

perturbation theory” (SPT) and resummation schemes. 
–  Understanding of RSD, BAO, SSC, beat-coupling, …  

•  Want to understand these developments (and old 
ideas) better in a simple context: 

•  Collection of uniform, parallel, 2D sheets of matter. 
–  Problem becomes 1 dimensional (plus time). 

–  Significant (!) analytic simplification: can do SPT to ∞ order. 
–  Easier to handle numerically with high dynamic range. 
–  Many of the features of 3D have close 1D analogues. 



The setup���
(with Ωm=1 throughout)

Since the force on a particle due to a sheet is independent of 
the distance from the sheet, 1st order Lagrangian PT (Zeldovich) 
is exact until “sheet crossing” (can also show this analytically). 

P3D(kk,k?) = (2⇡)2�(D)(k?)P1D(kk)

x 



Evolution



Equations of Motion

•  Eulerian 

 

•  Lagrangian 

In 1D can show SPT and LPT solutions are identical, to all 
orders, even though the systems are different! 
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Power spectra and correlation functions
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Can look at the response of power spectra to long wavelength 
mode (through the gradient times the large-scale variance) 
and the modes themselves (super-sample covariance, beat 

coupling), shifts and broadening of the BAO peak, ... 
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Broadening of the BAO peak

•  By far the dominant term (in 1D and in 3D) is 
the σ2 term, which broadens the BAO peak. 

•  Recall near the peak, ξ~10-3, σ~10Mpc, 
[ξ’’]-1/2~10Mpc. 

•  Thus the ξ2 and ξξ’ terms are small, but σ2ξ’’ 
is O(1). 
–  Because Lagrangian theories sum this important 

term to higher orders, they tend to do better near 
the BAO peak. 

–  The situation in P(k) space is more complicated. 



Shifting the BAO peak
•  The “dilation” term causes a shift of the BAO 

peak. 
–  ξ(x[1+α]) ~ ξ(x) + α xξ’(x) + … 

•  In overdense regions, the large-scale 
overdensity acts like a locally closed Universe  
remapping r to smaller scales. 

•  Since there is more growth in overdense 
regions than underdense ones, this leads to a 
net shift. 

•  A “separate Universe” approach can predict 
the coefficient of this term properly in 1D as 
well as in 3D. 



Beat coupling/SSC
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How does a high k mode respond to a long-wavelength 
over- or under-density?  In the limit that the long wavelength 
is the size of the survey (or larger) this is known as a “super 

sample” mode. 

c.f. [1+(34/21)δV] in 3D. 



PT issues

•  Convergence rather slow. 
– Resummation schemes. 
– Beware symmetry breaking! 

•  Solutions only valid prior to “sheet” 
crossing. 

•  P1-loop(k) depends on high-k’, non-
perturbative modes even at large 
scales. 



Lagrangian theory
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But Ψ is just a Gaussian random variable … know <eΨ>



Can generate any order in PT!
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Now we can understand common resummation schemes in 
“standard” perturbation theory, and we can look at the rate of 

convergence of perturbation theory.

Fn(k1, · · · , kn) = Gn(k1, · · · , kn) =
1

n!

knQn
i=1 ki



Convergence of PT



Convergence of PT



Convergence of PT
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Convergence of PT



Convergence of PT



For 1D CDM-like cosmology, standard perturbation theories do 
not describe evolution on any non-linear scale accurately. 



Some other results

•  Proof that SPT and LPT solutions identical to all orders, 
even though describe different physical systems! 

•  Easier to see the breaking of Galilean invariance that 
occurs in some schemes. 

•  Can formulate and test “effective field theory of large-
scale structure” or “coarse grained perturbation theory”. 
–  Correct and clarify some things in literature, give simpler 

derivations of some results. 
–  A new pseudo-Lagrangian EFT. 
–  For power-law power spectra these theories get a lot of stuff 

“right”.  Still some issues though … 



Effective field theory

•  “Effective” field theory has a long history in other 
areas of physics. 
–  But cosmology presents some unique features, so beware 

misleading analogies! 

•  Basic idea is to write equations only in terms of long-
wavelength fields, with no small-scale terms explicitly 
involved (they’ve been “integrated out”). 

•  The effects of these small-scale terms then show up 
as additional terms in effective equations of motion. 

Traditional perturbation theory treats all scales as if they 
were perturbative, and the matter field as a perfect fluid.

The goal of “EFT” is to overcome these deficiencies.



Trivial example: continuity
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And you can derive a similar set of “rhs terms” for the 
Euler equation if you start with the Poisson and  

Boltzmann equations and smooth them. 
Terms on the rhs must obey the symmetries of the 

system, and this allows another route … 
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Procedure?
•  We need to make some approximations in 

order to make progress … 
•  Combine the Euler and continuity equations 

into a 2nd order DE with all non-linear terms 
on the rhs. 

•  Assume we can expand the “extra” terms on 
the rhs simultaneously in derivatives (powers 
of k) and powers of δl with unknown 
coefficients. 

•  Then integrate the source terms against the 
Green’s function. 

D(2)
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What terms are allowed?
•  Working to lowest order, X must go as c1J+c2k2δl where J 

is uncorrelated with δl. 
–  By mass and momentum conservation, the leading order 

expansion of J must be k2. 

•  At 1-loop we simply integrate against G(a,a’), which gives 
the normal PT terms and just modifies ci for the “extra” 
terms. 
–  δ = δ(1) + δ(2) + δ(3) + c1’J + c2’k2δ(1) + …  

•  Thus the power spectrum must look like: 

•  Where α can be fit for and PJ goes as k4 for small k, 
otherwise unknown (usually dropped for all k). 
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Limits and counter-terms
•  It is easy to show that the k2P and PJ terms 

asymptotically cancel any cutoff dependence in 
the theory. 
–  The ci are functions of Λ. 

•  Even SPT generates a term that goes 
asymptotically as k2P, so it’s reasonable to have!  

•  However, for reasonable k and Λ the final 
answers depend on Λ if we keep only 1-loop!   

•  Typically take the limit Λ goes to ∞. 
–  This is the limit we were trying to avoid, but hope that 

EFTLSS is less sensitive than SPT. 



Power-law cases
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Models with an Einstein-de Sitter cosmology and a power-
law power spectrum exhibit self-similar evolution.  The 
structure of the power spectrum is easy to see, and the 

way the counterterms enter is much simplified. 
 

Here are the expressions for a hard k cut: 

While analytically nice, it’s unclear how relevant the intuition from 
these models is to CDM … caveat emptor! 



Power-law models

Power-law cosmologies, P(k)~kn, have self-similar solutions.  
PT at 1-loop is P(k)~kn + #k2n+1.  EFT adds kn+2 and “k4” 

terms with free coefficients … these really help! 



Lagrangian EFTLSS
•  Like SPT, EFTLSS expands displacement in 

powers of δ. 
•  Want to avoid this with a Lagrangian scheme. 
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Have choice of keeping terms exponentiated or consistently 
expanding by order … numerically not much difference. 

Expression for the correlation function is easy … 



Comparison



Beyond 1-loop

•  Going beyond 1-loop is very hard. 
•  Unlike the 1-loop case, where integrating over 

G(a,a’) simply modifies the ci, terms at 2-loop 
order have different integrals which affect the 
k-dependence. 

•  Authors attempting 2-loop calculations need 
to drop many terms.   



Conclusions
•  Cosmological PT in 1D has some nice features. 

–  Easy to simulate, easy to calculate. 
–  Can do SPT to ∞ order. 
–  Algebra for common methods easier to understand. 
–  Close analogs to many 3D effects/situations. 

•  Can prove SPT converges … to the wrong answer. 
•  Can understand Fourier vs. Configuration and Euler vs. 

Lagrange more easily. 
•  EFTLSS is much simpler in 1D. 

–  Easier to see analytically what’s happening. 
–  Dramatic improvement for power-law models (where symmetry is 

really helping). 

•  Nice “toy” problem for understanding PT. 



The End



Stochastic contribution



1-loop decomposition



1-loop decomposition


