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Limited options!
¥! Beyond a certain scale, linear perturbation theory 

breaks down 

Ð!Definition of Ònon-linear scaleÓ? 
¥! At this point we have few options: 

Ð!Analytical models of non-linear growth. 
¥! ZelÕdovich approximation. 

¥! Spherical top-hat collapse. 

Ð!Perturbation theory. 
¥! Realm of validity?  Convergence criterion? 

¥! Good for small corrections to almost linear problems. 

Ð!Direct simulation. 
¥! Numerical convergence. 
¥! What models to run? 

¥! Missing physics. 



Scale of non-linearity!
¥! There are several ways to define a ÒscaleÓ of 

non-linearity. 
¥! Where Δ2(k)=1 (or !, or É). 

Ð!Dangerous when Δ2(k) is very flat. 

¥! By the rms linear theory displacement. 

¥! Where the 2nd order correction to some 
quantity is 1% (10%) of the 1st order term. 
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Perturbation theory!
¥! There is no reason (in principle) to stop at 

linear order in perturbation theory. 
Ð!Can expand to all orders: δ=δ(1)+δ(2)+δ(3)+... 

Ð!Can sum subsets of terms. 
Ð!Usefulness/convergence of such an expansion not 

always clear. 

¥! Consider only dark matter and assume we 
are in the single-stream limit. 

Peebles (1980), Juszkiewicz (1981), Goroff++(1986),!
Makino++(1992), Jain&Bertschinger(1994), Fry (1994).!
Reviews/comparison with N-body:!
  Bernardeau++(2002; Phys. Rep. 367, 1).!
  Carlson++(2009; PRD 80, 043531)!



Equations of motion!

∂δ
∂τ + !! · [(1 + " )!v] = 0

∂�v
∂τ +H!v +

!
!v · !!

"
!v = " !! !

! 2! = 3
2H

2"

¥! Very familiar looking fluid equations 
o! means we can borrow methods/ideas from other fields. 

¥! Note the quadratic nature of the non-linearity. 
¥! Since equations are now non-linear, canÕt use super-
position of (exact) solutions even if they could be found! 
¥! Proceed by perturbative expansion. 

Under these approximations, and assuming Ωm=1!



Velocities are " potential ßow!
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Assume that v 
comes from a 
potential flow (self-
consistent; curl[v]
~a-1 at linear order) 
then it is totally 
specified by its 
divergence, θ, !



Go into Fourier space!
Putting the quadratic terms on the rhs and going into 
Fourier space: 

∂δ(�k )
∂τ + θ(�k) = !

� d3 q
(2π) 3

�ká�q
q2 θ(�q)δ(�k ! �q),

∂θ(�k )
∂τ +Hθ(�k) + 3

2 ! mH
2δ(�k) = !

� d3 q
(2π) 3

k 2 �qá(�k ! �q)
2q2 |�k ! �q|2

" θ(�q)θ(�k ! �q).

v~(q/q2)θ	

Div! Product=!
Convolution!



Linear order!
¥! To lowest order in δ and θ:	



¥! with f(z)~Ωm
0.6=1 for Ωm=1 and D(a)~a. 

¥! Decaying mode, δ~a-3/2, has to be zero for δ 
to be well-behaved as a->0. 

¥! Define δ0=δL(k,z=0). 

! L(k , z) =
D(z)
D(zi)

! i(k)

"L(k , z) = ! f (z)H(z)
D (z)
D(zi)

! i(k)



Standard perturbation theory!

¥! Develop δ and θ as power series: 

¥! then the δ(n) can be written 

¥! with a similar expression for θ(n). 
¥! The Fn and Gn are just ratios of dot products of the qs 

and obey simple recurrence relations. 
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Recurrence relations I!

¥! Plugging the expansion into our 
equations and using 
Ð!(d/dτ)an=nHan 

Ð!(d/dτ)H=(-1/2)H2 for EdS 

¥! we have (canceling H from both sides): 

n! (n) + " (n) = !
!

d3q1

(2#)3
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Recurrence relations II!

¥! Which we can rewrite 

¥! where An and Bn are the rhs mode-coupling integrals. 

¥! This generates recursion relations for the Fn and Gn 
(because of the sums in An and Bn) 

! (n ) =
(2n + 1) An ! Bn

(2n + 3)( n ! 1)
, " (n ) =
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Example: 2nd order!

¥! The coupling function: 

¥! where we have symmetrized the 
function in terms of its arguments. 
Ð!Note: this function peaks when k1~k2~k/2. 
Ð!This will be important later. 
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Formal development!
¥! We can make the expressions above more 

formal by defining η=ln(a) and 

¥! then writing 

¥! with the obvious definitions of Ω and γ. 

¥! We can also define P~<φφ>, B~<φφφ> so e.g. 

!
! 1

! 2

"
= e! !

!
"

! #/ H

"

! ! " a = ! Ωab" b + e! #abc" b" c

! ηPab = ! ! acPcb ! ! bcPac + eη

�
d3q[" acd Bbcd + Bacd " bcd]



Power spectrum!

¥! If the initial fluctuations are Gaussian 
only expectation values even in δ0 
survive: 
Ð!P(k) ~ <[δ(1)+δ(2)+δ(3)+É][ δ(1)+δ(2)+δ(3)+É]> 

Ð!        = P(1,1) + 2P(1,3) + P(2,2) + É 

¥! with terms like <δ(1)δ(2)> vanishing 
because they reduce to <δ0δ0δ0>. 



Perturbation theory: diagrams!

! n (k ) =
k

qn

q1

! 0(qn )

...

! 0(q2)

! 0(q1)

Fn

q
!

q′

=
q q′

" (2! )3"D (q+ q′)P0(q),

! = 2
k -k

q

k " q

" q

q " k

= 2
∫

d3q
(2! )3 F2(q, k " q)F2(" q, q " k )P0(q)P0(|k " q|)

Just as there is a 
diagrammatic short-hand for 
perturbation theory in 
quantum field theory, so there 
is in cosmology:  



Example: 2nd order!

P (1,3)(k) =
1
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Perturbation theory enables the generation of truly impressive 
looking equations which arise from simple angle integrals.!
Like Feynman integrals, they are simple but look erudite!!



Example: 2nd order!
¥! At low k, P(2,2) is positive and P(1,3) is negative 

Ð!Large cancellation. 

¥! For large k total contribution is negative: 
Ð!P(2,2)~ (1/4) k2Σ2 PL(k) 

Ð!P(1,3)~ -(1/2) k2Σ2 PL(k) 

¥! Here Σ is the rms displacement (in each 
component) in linear theory. 
Ð!It will come up again!! 

! 2 =
1

3π2

! !

0
dq PL(q)



Example!
The lowest order correction 
to the matter power spectrum 
at z=0 (1-loop SPT).!

Note the improvement at low k where 
non-linear growth causes a suppression 
of power (pre-virialization).!



Beyond 2nd order!
¥! Expressions for higher orders are easy to 

derive, especially using computer algebra 
packages. 

¥! Using rotation symmetry the Nth order 
contribution requires mode coupling integrals 
of dimension 3N-1. 
Ð!Best done using Monte-Carlo integration. 

Ð!Prohibitive for very high orders. 
Ð!Not clear this expansion is converging! 



Comparison with exact results!

Carlson++09!

Broad-band shape of PL has 
been divided out to focus on 
more subtle features. !

Linear!
1st order correction!
2nd order correction!



Including bias!
¥! Perturbation theory clearly cannot describe the 

formation of collapsed, bound objects such as dark 
matter halos. 

¥! We can extend the usual thinking about Òlinear biasÓ 
to a power-series in the Eulerian density field: 

�r! δgal = Σ bn(δn/n!) 
¥! The expressions for P(k) now involve b1 to lowest 

order, b1 and b2 to next order, etc. 
Ð! The physical meaning of these terms is actually hard to 

figure out, and the validity of the defining expression is 
dubious, but this is the standard way to include bias in 
Eulerian perturbation theory. 



Other methods!
¥! Renormalized perturbation theory 

Ð! A variant of ÒDyson-WyldÓ resummation. 
Ð! An expansion in Òorder of complexityÓ. 

¥! Closure theory 
Ð! Write expressions for (d/dτ)P in terms of P, B, T, É 
Ð! Approximate B by leading-order expression in SPT. 

¥! Time-RG theory (& RGPT) 
Ð! As above, but assume B=0 
Ð! Good for models with mν>0 where linear growth is scale-

dependent. 

¥! Path integral formalism 
Ð! Perturbative evaluation of path integral gives SPT. 
Ð! Large N expansion, 2PI effective action, steepest descent. 

¥! Lagrangian perturbation theory 

(see Carlson++09 for references)!



Some other theories!

1st SPT!
Large-N!
LPT!
Time-RG!
RGPT!



Other statistics!

PT makes predictions 
for other statistics as 
well.  For example, the 
power spectra of the 
velocity and the 
density-velocity cross 
spectrum.  Here it 
seems to do less well.!
SPT!
RPT!
Closure!
Time-RG!



Some other quantities!
1st SPT!
LPT!
RPT!
Closure!
Large-N!

Carlson++09!

The propagator, or!

which measures the 
decoherence of the 
Þnal density Þeld due 
to non-linear 
evolution.!

G(k) ∝ �! NL ! !
L �

�! L ! !
L �



Lagrangian perturbation theory!

¥! A different approach to PT, which has been radically 
developed recently by Matsubara and is very useful 
for BAO. 
Ð! Buchert89, Moutarde++91, Bouchet++92, Catelan95, Hivon++95. 

Ð! Matsubara (2008a; PRD, 77, 063530) 

Ð! Matsubara (2008b; PRD, 78, 083519) 

¥! Relates the current (Eulerian) position of a mass 
element, x, to its initial (Lagrangian) position, q, 
through a displacement vector field, Ψ. 



Lagrangian perturbation theory!
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Kernels!

L(1) (p1) =
k
k2 (1)

L(2) (p1, p2) =
3
7

k
k2

�
1 !

�
p1 áp2

p1p2

�2
�

(2)

L(3) (p1, p2, p3) = á á á (3)

k " p1 + á á á+ pn



Standard LPT!

¥! If we expand the exponential and keep terms 
consistently in δ0 we regain a series δ=δ(1)+δ(2)+
É where δ(1) is linear theory and e.g. 

¥! which regains ÒSPTÓ. 
Ð!The quantity in square brackets is F2. 

δ(2) (k) =
1
2

!
d3k1d3k2

(2π)3 δD (k1 + k2 − k)δ0(k1)δ0(k2)
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LPT power spectrum!
¥! Alternatively we can use the expression for δk 

to write 

¥! where ΔΨ=Ψ(q)-Ψ(0). 
¥! Expanding the exponential and plugging in for 
Ψ(n) gives the usual results. 

¥! BUT Matsubara suggested a different and 
very clever approach. 

P(k) =
!

d3q e! i�ká�q
"#

e! i�ká! �"
$

! 1
%



Cumulants!
¥! The cumulant expansion theorem allows us to write 

the expectation value of the exponential in terms of 
the exponential of expectation values. 

¥! Expand the terms (kΔΨ)N using the binomial theorem. 

¥! There are two types of terms: 

Ð!Those depending on Ψ at same point. 
¥! This is independent of position and can be factored out 

of the integral. 

Ð!Those depending on Ψ at different points. 
¥! These can be expanded as in the usual treatment. 



Example!

¥! Imagine Ψ is Gaussian with mean zero. 

¥! For such a Gaussian: <eX>=exp[σ2/2]. 

P (k) =
!

d3qe! ik áq
"#

e! iki ∆Ψi (q )
$

! 1
%

!
e! i k ·∆! (q)

"
= exp

#
!

1
2
ki kj "!" i (q)!" j (q)#

$

ki kj !∆Ψi (q)∆Ψj (q)" = 2k2
i !Ψ2

i (0)" # 2ki kj ! ij (q)

Keep exponentiated.! Expand!



Resummed LPT!
¥! The first corrections to the power spectrum are then:  

¥! where P(2,2) is as in SPT but part of P(1,3) has been 
ÒresummedÓ into the exponential prefactor. 

¥! The exponential prefactor is identical to that obtained 
from 
Ð! The peak-background split (Eisenstein++07) 

Ð! Renormalized Perturbation Theory (Crocce++08). 

P(k) = e−(kΣ) 2 / 2
�
PL (k) + P(2,2) (k) + �P(1,3) (k)

�
,



Beyond real-space mass!
¥! One of the more impressive features of MatsubaraÕs approach is 

that it can gracefully handle both biased tracers and redshift 
space distortions. 

¥! In redshift space  

¥! For bias local in Lagrangian space: 

¥! we obtain 

¥! which can be massaged with the same tricks as we used for the 
mass. 

¥! If we assume halos/galaxies form at peaks of the initial density 
field (Òpeaks biasÓ) then explicit expressions for the integrals of 
F exist. 

! obj (x) =
!

d3q F [! L (q)] ! D (x ! q ! Ψ)

P(k) =
!

d3q e! ik ·q
" !

d! 1

2"
d! 2

2"
F (! 1)F (! 2)

#
ei[! 1" L (q1)+ ! 2" L (q2)]+ ik ·! !

$
− 1

%

! ! ! +
!z á ˙!
H

!z



The answer!

P (s)
obj = e! [1+ f ( f +2) µ 2 ]k 2 Σ2 / 2

!
"
b + fµ2#2

PL +
$

n,m

µ2n fm Enm

%

ZelÕdovich!
damping!

Mode coupling terms 
up to E44. These terms 
involve b1 and b2.!

Note angle 
dependence of 
damping.!



Non-linearities and BAO!



Effects of non-linearity on BAO!

¥! Non-linear evolution has 3 effects on the 
power spectrum: 
Ð!It generates ÒexcessÓ high k power, reducing the 

contrast of the wiggles. 

Ð! It damps the oscillations. 
Ð! It generates an out-of-phase component. 

¥! In configuration space: 
Ð!Generates ÒexcessÓ small-scale power. 

Ð!Broadens the peak. 
Ð!Shifts the peak. 



Non-linearities smear the peak!

Broadening of feature due 
to Gaussian smoothing and 
~0.5% shift due to mode 
coupling. 

Loss of contrast and 
excess power from 
non-linear collapse. 



Mode-coupling terms!

¥! The P1n terms are benign. 
¥! By contrast the Pmn terms involve integrals of 

products of PLs times peaked kernels. 

¥! Example: P22 ~ ∫ PLPL F2 and F2 is sharply peaked 
around q1"q 2"k/2.   

¥! Thus the ∫ PLPL term contains an out-of-phase 
oscillation 
Ð! PL~ É + sin(kr):  PLPLF2 ~ sin2(kr/2) ~ 1+cos(kr) 

¥! Since cos(x)~d/dx sin(x) this gives a ÒshiftÓ in the 
peak 
Ð! P(k/α) ~ P(k) - (α-1) dP/dlnk + É 

Recall in PT we can write δ=δ(1)+δ(2)+É or!
P = {P11 + P13 + P15 + É} + {P 22 + É } = P 1n + Pmn.!



Mode-coupling approximates derivative!

Up to an overall 
factor the mode-
coupling term, P22, is 
well approximated by 
dPL/dlnk.!



ModiÞed template!
¥! This discussion suggests a modified 

template, which has just as many free 
parameters as our old template: 

¥! This removes most of the shift. 

Pw (k, ! ) = exp
�
−k2! 2

2

�
PL(k/ ! )

+ exp
�
−k2! 2

1

2

�
P22(k/ ! ) .

z	

 DM	

 xδL	

 w/P22	


0.0! 2.91 ± 0.20! -0.2 ±0.1! -0.03 ± 0.16!

0.3! 1.88 ± 0.12! -0.2 ±0.1! -0.38 ± 0.09!

0.7! 1.17 ± 0.07! -0.1 ±0.1! -0.12 ± 0.05!

1.0! 0.88 ± 0.06! -0.1 ±0.1! -0.04 ± 0.04!

P
adm

anabhan &
 W

hite (2009)!



Biased tracers?!
¥! In order to remove the shift we needed to 

know the relative amplitude of P11 and P22. 
Ð!For the mass, this is known. 

¥! What do we do for biased tracers? 
Ð!Eulerian bias 

Ð!Lagrangian bias 

Ph =
�
bE

1

�2
(P11 + P22) + bE

1 bE
2

�
3
7
Q8 + Q9

�
+
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2
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1 bL
2 Q12 +

1
2

�
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Mode-coupling integrals!

Qn(k) =
k3

4! 2

! ∞

0
dr PL(kr)

! 1

−1
dxPL(k

"
1 + r2 − 2rx) #Qn(r, x)

!Q1 = r2 (1 ! x2 )2

y2 , !Q2 = (1 ! x2 )rx(1 ! rx)
y2 ,

!Q3 = x2 (1 ! rx) 2

y2 , !Q4 = 1! x2

y2 ,
!Q5 = rx(1 ! x2 )

y , !Q6 = (1 ! 3rx)(1 ! x2 )
y ,

!Q7 = x2 (1 ! rx)
y , !Q8 = r2 (1 ! x2 )

y ,
!Q9 = rx(1 ! rx)

y , !Q10 = 1 ! x2,
!Q11 = x2, !Q12 = rx, !Q13 = r 2

(Matsubara 2008)!



Out-of-phase?!

The numerous combinations that come in are also well 
approximated by the (log-)derivative of P11!  All of these terms can 

be effectively written as:!

Ph = exp
!

!
k2Σ2

2

"
[B1PL + B2P22] .



Size of the shifts?!
¥! Simple model explains B1-B2 relation. 

Ð! True for a variety of cosmologies, including ΛCDM. 
Ð! Can also be measured from simulations (using some tricks). 

¥! For ΛCDM the shifts are: 

�r! α-1~0.5% x D2 x B2/B1 

Shifts at z=0 for!

Halos of mass M!
Halos above M!
N~[1+M/M1]!

At higher z the shift decreases as D2.!

Recall, the Þnal error in BAO scale is the 
uncertainty in this correction, not the size 
of the correction itself!!



Redshift space!

¥! In resummed LPT we can also consider the 
redshift space power spectrum for biased 
tracers. 

¥! For the isotropic P(k) find a similar story 
though now the scaling coefficients depend 
on f~dD/dlna. 
Ð!Expressions become more complex, but the 

structure is unchanged. 

¥! The amplitude of the shift increases slightly. 



Perturbation theory & BAO!
¥! Meiksin, White & Peacock, 1999 

Ð! Baryonic signatures in large-scale structure 

¥! Crocce & Scoccimarro, 2007 
Ð! Nonlinear Evolution of Baryon Acoustic Oscillations 

¥! Nishimichi et al., 2007 
Ð! Characteristic scales of BAO from perturbation theory 

¥! Matsubara, 2007, 2008 
¥! Jeong & Komatsu, 2007, 2008 

Ð! Perturbation theory reloaded I & II 

¥! Pietroni, 2008 
Ð! Flowing with time 

¥! Padmanabhan & White (2009) 
Ð! Calibrating the baryon oscillation ruler for matter and halos 

¥! Padmanabhan et al., 2009; Noh et al. 2009 
Ð! Reconstructing baryon oscillations: A Lagrangian theory perspective 
Ð! Reconstructing baryon oscillations. 

¥! Taruya et al., 2009 
Ð! Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation 

Theory in Real and Redshift Spaces 



!e End !


