Cosmological Results from Planck 2015

on behalf of the Planck collaboration

Fig. courtesy V. Pettorino

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Outline

- What is the CMB?
- What is Planck?
- What has changed (& what hasn't).
 - Cosmological parameters.
 - CMB lensing.
 - Comparison with other datasets.
- More cool stuff!
- Conclusions.

The cosmic microwave background

- The entire Universe is filled with radiation in the form of a 2.7K black-body.
- This radiation is a relic of the hot, dense, early phase of the Universe (the hot-big bang).
- The light travels to us from a "surface of last scattering" at z~1100 (when the Universe was 10⁻³ times smaller than today and only 380,000yr old).
 - At this z the Universe was finally cold enough for protons to capture electrons to form neutral Hydrogen.
 - Optical depth to photon scattering quickly drops from τ >>1 to τ <<1.
- The radiation is almost the same intensity in all directions, but contains tiny fluctuations in intensity (or temperature) at the level of 10⁻⁴: CMB anisotropy.

The cartoon: sound waves in the early Universe

- At early times the universe was hot, dense and ionized. Photons and matter were tightly coupled by Thomson scattering.
 - Short m.f.p. allows fluid approximation.
- Initial fluctuations in density and gravitational potential drive acoustic waves in the bγ fluid: compressions and rarefactions.
- These show up as temperature fluctuations in the CMB

 $\Delta T \sim \delta \rho_{\gamma}^{1/4} \sim A(k) \cos(kc_s t) \qquad \text{[harmonic wave]}$

The cartoon

A sudden "recombination" decouples the radiation and matter, giving us a snapshot of the fluid at "last scattering".

- These fluctuations are then projected on the sky with $\lambda \sim d_{Is} \theta$ or $I \sim k d_{Is}$
- (We usually work in "angular Fourier space", and decompose $\Delta T(\theta, \phi) = \Sigma a_{lm} Y_{lm}(\theta, \phi)$ then use the a_{lm}).

Angular power spectrum!

Anisotropy generates (linear) polarization

A quadrupole anisotropy generates linear poln. Normally we define polarization patterns in terms of their parity and (confusingly!) refer to them as E & B modes. Density perturbations can generate only E-mode polarization, but primordial gravity waves (or vorticity) can generate both E- and B-modes.

CMB encodes valuable information

- The CMB spectrum depends upon the initial spectrum of perturbations (inflation?) and the conditions in the photon-baryon fluid prior to last scattering.
- The rich structure in the spectrum, and the dependence on many cosmological parameters, provides a gold-mine of information *if* the signal can be accurately measured *and* compared to precise theoretical predictions.
- Scattering of an anisotropic temperature field generates (linear) polarization, which allows access to even more information.
- We can also get information about the low z Universe by looking at CMB lensing and BAO.

Planck mission

Planck was a 3rd generation space mission (COBE, WMAP)

- Like WMAP, Planck observed at " L_2 ".

- It was part of ESA's "Cosmic Visions" program.
- It was the first sub-mm mission to map the entire sky with mJy sensitivity and resolution better than 10 arcmins.

- 74 detectors covering 25GHz-1000GHz, resolution 30'-5'.

 Planck measured temperature anisotropy with accuracy set by fundamental astrophysical limits.

Cesa PLANCK

Looking back to the dawn of time

Planck Telescope 1.5x1.9m off-axis Gregorian T = 50 K

LFI Radiometers 30-70 GHz, T = 20 K

HFI Bolometers 100-857 GHz, T = 0.1 K

The orbit

Planck made a map of the full sky every ~6 months.

Current data release: 2015

- This is our second data release
 - Full mission data (12 Aug 2009 23 Oct 2013).
- In addition to better S/N, the new release takes advantage of multiple full-sky redundancies
 - Planck scans the sky differently in "even" and "odd" sky surveys.
 - Scan changed between SS4 and SS5.
- There will be one more data release, next year.

SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8
yrl		yr2		yr3		yr4	
Nom	inal(2013)						
		HFI					
LFI							

Current data release: 2015

- What has changed:
 - More data (29/49 months vs. 15.5) enabling further checks.
 - Improved systematics removal, calibration and beams.
 - More simulations (10x) used to assess uncertainties.
 - More sky used, improved foreground model (incl. dust at all freq.).
 - Lensing now 40 σ (and best modes have S/N~1 per mode)!
 - Polarization!!!
- What has not changed (much):
 - ΛCDM still a good fit.
 - The Universe is still very flat
 - Parameters and major cosmological inferences from 2013.

The angular power spectrum

Data compression!

- A gold-mine of information *if* the signal can be accurately measured *and* compared to precise theoretical predictions.
- We find that a simple, 6 parameter model fits the data extremely well.
 - Data compression: trillions of bits of data are compressed to billions of measurements at 9 frequencies, then tens of millions of pixels are compressed to thousands of multipoles which are compressed to 6 cosmological parameters!
 - With no evidence for a 7th.
- For the "base model" the CMB determines all of the parameters, on its own, with exceptional accuracy.
 - If we include polarization, best determined parameter is 0.03%.
 - Many parameters are determined to better than 1%.

Base ACDM model

Parameter	Temperature + lensing	All + lensing
ω_{b}	0.02226 ± 0.00023	0.02226 ± 0.00016
ω_{c}	0.1186 ± 0.0020	0.1193 ± 0.0014*
100θ _{MC}	1.04103 ± 0.00046	1.04087 ± 0.00032
τ	0.066 ± 0.016	0.063 ± 0.014
$10^9 A_s e^{-2\tau}$	1.874 ± 0.013	1.878 ± 0.011
n _s	0.9677 ± 0.0060	0.9653 ± 0.0048
H ₀ (km/s/Mpc)	67.81 ± 0.92	67.5 ± 0.64
σ_8	0.8149 ± 0.0093	0.8150 ± 0.0087

And my favorite derived parameter: $z_{rec} = 1090.00 \pm 0.29$

Changes in parameters: standard model

- Uncertainties reduced by 2-3x on key parameters.
- Photometric calibration increased by 0.8%.
 - Uncertainty now 0.1%. Excellent agreement on orbital dipole between WMAP, LFI & HFI!
- Thomson τ lower by ~1 σ (so z_{re} decreased ~1 σ)
 - but calibration increased power so σ_8 hardly changed
- n_s increased by ~ 0.7σ
- $\omega_{\rm b}$ increased by ~0.6 σ and error decreased.
- Limits on isocurvature modes, $\Omega_{\rm K}$, m_v, $\Delta N_{\rm eff}$, f_{NL}, DM annihilation etc. all tighter. No deviations detected.

CMB lensing

- Photons from the CMB are deflected on their way to us by the potentials due to large-scale structure.
- The typical deflection is 2-3 arcmin but deflections are coherent over degrees.
 - Signal dominated by structures of tens of Mpc at $z\sim 2$.
- Gives sensitivity to the "low z" Universe.
 - Allows us to break some degeneracies from purely within the Planck dataset.
 - Provides a cross-check on the paradigm: are the structures we infer at z~2 consistent with the "initial conditions" measured at z~1,000?
- Provides a map, over the whole sky, of the (projected) mass back to the surface of last-scattering (98% of the way to the horizon).

Lensing potential

Lensing now measured at 40σ . Better than predicted by anisotropy!

Lensing power spectrum

Constrains $\sigma_8 \Omega_m^{1/4}$ to 3.5%!

Independent check on the amplitude of matter fluctuations in the Universe: σ_8

Lensing allows an independent check on the normalization. Consistent with primary anisotropy results. Higher than some probes had found.

Optical depth to Thomson scattering

New Planck results (or WMAP results "cleaned" with Planck 353GHz data) point to a later epoch of reionization.

This is easier to accommodate into our view of how reionization occurred based on galaxy counts at early times.

Still flat after all these years ...

Constraints on neutrinos now tighter

Constraints on Inflation

- Planck 2013 had a huge impact on inflationary model building ...
- With Planck 2015
 - Constraints on non-Gaussianity get tighter, and new different types are considered explicitly.
 - Constraints on isocurvature modes get tighter.
 - Running of spectral index zero within ~1 σ .
 - Further, tighter constraints on features in primordial power spectrum.
- Joint analysis of Planck+BICEP2/Keck array data gives limits on primordial gravitational wave signal in good agreement with Planck alone.

Planck and inflation: scorecard

The simplest models of inflation predict ...

A spatially flat Universe	$\Omega_{\rm K}$ =0.000 ± 0.0025
with <i>nearly</i> scale-invariant (red) spectrum of density perturbations	0.968 ± 0.006
which is almost a power-law	dn _s /dln <i>k</i> = -0.0065 ± 0.0076
dominated by scalar perturbations	r _{0.002} <0.09 (95%)
which are Gaussian	$f_{NL} = 2.5 \pm 5.7$
and adiabatic	β _{iso} < 3% (95%)
with negligible topological defects	$f_{10} < 0.04 \ (G\mu/c^2 < 10^{-7} - 10^{-6})$

Polarization quite constraining for some extensions to standard model:

e.g. fully correlated matter isocurvature

Consistency with other data

- The Planck data are consistent with the predictions of the simplest Λ CDM models.
- Within the framework of such models we can compare to a wide variety of other astrophysical/cosmological datasets.
 - Primordial nucleosynthesis
 - Baryon Acoustic Oscillations (distance scale).
 - Direct measures of H₀.
 - Redshift-space distortions.
 - Type Ia SNe.
 - Cosmic shear.
 - Counts of rich clusters of galaxies.
- Tensions remain.

- etc

Physics is Universal!

Baryon density measured by BBN and CMB are in excellent agreement ... comparison uses all known laws of physics!

[And we also have a measurement of the Hydrogen 2s→1s transition which is 5x better than the lab measurement, and in fantastic agreement with the theoretical calculation!]

Distance scale comparison: BAO

Acoustic oscillations at $z \sim 1100$ and z < 1 tell the same story about the distance scale: Λ CDM!

And RSD

We can measure the rate-of-growth of large-scale structure at z<1 from galaxy redshift surveys and compare to ΛCDM predictions constrained from Planck...

Just plain cool ...

- In 2013 we detected the motion of the Earth in the aberration of the measured CMB anisotropy.
 - Observed at >4 σ in 2013 data.
- In this data release we detect the impact of fluctuations in the 2K neutrino background!
- Evidence for v background strong ($N_{eff}=0$ ruled out @ >10 σ)
- Now have exquisite detection of free-streaming of this component (measures of c_{eff}² and c_{vis}²).

- Sound speed (squared) should be, and is, 1/3!

Conclusions

- The Planck mission has been stunningly successful.
- Impressive confirmation of the standard cosmological model.
 - Precise constraints on model and parameters.
 - Tight limits on deviations from base model.
 - Some indications of internal and external tensions, but with only modest statistical significance.
- New analysis should improve data quality even more for the next release!

