Measuring large-scale structure with the $Ly\alpha$ forest

Martin White UCB/LBNL Santa Fe, 2011

LSS and the IGM

The IGM can be used to constrain both small-scale power and large-scale power at high redshift.

- For BAO, distance constraints become tighter as one moves to higher z
 - More volume per sky area.
 - Less non-linearity.
- Expensive if use galaxies as tracers.
- Any tracer will do: HI
 - 21cm from HI in galaxies: SKA or custom expt.
 - Ly α from IGM as probed by QSOs.
 - Absorption traces mass in a calculable way.
 - A dense grid of QSO sightlines could probe BAO
 - (White 2003, McDonald & Eisenstein 2007, Slosar++09, White++10, McQuinn & White 2011)

The future: 3D imaging

- In the past, $Ly\alpha$ forest surveys were analyzed as a large number of 1D "skewers" through the density field.
- Next generation surveys (and BOSS) achieve densities of 10-100 QSOs/deg².
- Cross-correlations between sightlines become relevant.
 - Have a poorly sampled 3D field, with an odd window function, not a large number of well sampled 1D fields.
- This allows S/N>1 on tens of Mpc modes in 3D.
- On scales <1Mpc, auto-correlations win.
- On scales >1Mpc, cross-correlations can offer huge statistical and systematic wins.

Impacts

- Ability to measure large-scale structure at z=2-3 allows:
 - Better constrains on distance-redshift relation.
 - Measure of H(z) at $z\sim 2.5$.
 - Constraint on $\Omega_{\rm K}$ at 10⁻³ level.
 - Measurement of temperature fluctuations from He reionization or intensity fluctuations from UVbg sources.
 - If could push to z~4, may be able to detect T fluctuations from H reionization too! (McQuinn++10)
- Amazingly a single number characterizes the sensitivity of a survey to the 3D flux power spectrum (c.f. FKP).

FGPA

- Physics of the forest is "straightforward".
 - Gas making up the IGM is in photo-ionization equilibrium with a (uniform?) ionization field which results in a tight ρ-T relation for the absorbing material
 - The HI density is proportional to a power of the baryon density.
 - Since pressure forces are sub-dominant on "large" scales, the gas traces the dark matter (0.1-10Mpc/h).
 - The structure in the QSO spectrum thus traces, in a calculable way, the fluctuations in the matter density along the line-of-sight to the QSO.

On large scales

- Differences with the galaxies
 - Signal is $e^{-\tau}$, so downweights high- δ .
 - Need to be slightly careful about redshift space distortions (τ conserved, not n, except in linedominated regime).
 - Projection/finite sampling.
- Additional physics
 - Absorption could be affected by non-gravitational physics
 - Fluctuations in the UV background
 - Temperature fluctuations due to HeII reionization
 - Your favorite astrophysical phenomenon here.

Orientation: distances & redshifts

Z	λ_{lpha}	< F >	Δχ	dλ/dχ	dv/dχ	b
2.0	3647	0.88	575	1.11	91	0.12
2.5	4255	0.80	546	1.37	97	0.18
3.0	4863	0.70	518	1.66	102	0.27

$$P_N = \frac{0.8}{\langle F \rangle^2} \left[S/N \right]_{\Delta\lambda}^{-2} \left(\frac{\Delta\lambda}{1\mathring{A}} \right) \left(\frac{1+z}{4} \right)^{-3/2}$$

Distances are (comoving) Mpc/h, wavelengths in Å and velocities in km/s.

Skewer density

Can't tell the difference between a constant field ($k_x = k_y = k_z = 0$) and one varying transverse to the line-of-sight ($k_x > 0$ or $k_y > 0$)

Skewer density

- Looking along a finite number of sightlines leads to power aliasing.
 - As the number of sightlines increases this aliasing is tamed, eventually we reach sample variance.
- Aliasing = sample variance at a critical number density of sightlines (about 50 quasars/sq. deg.)
 - Set by the ratio of P_F to P_{los}
 - The more small-scale power the larger P_{los} at fixed P_F, and the more skewers you need.

The flux over"density"

- Define $\delta_F(\mathbf{x}) = F(\mathbf{x})/\langle F \rangle 1$ with FT $\delta(\mathbf{k})$.
- $P_F(\mathbf{k})=b^2(z)[1+g\mu^2]^2P_{lin}(|\mathbf{k}|)Exp[-k^2/k_D^2]$ - g~1 and b~0.2, k_D~0.1km/s.
- Window function W(\boldsymbol{x})~ $\Sigma \delta^{(D)}(\boldsymbol{x}_{p}-\boldsymbol{x}_{pn})$
- And the survey measures $\delta_F(\mathbf{x})W(\mathbf{x})$.
- Take the FT:
 - The line-of-sight is straightforward.
 - Transverse the quasars provide a Monte-Carlo sampling of the FT integral.
 - Allow weights, *w*, per skewer.

Large-N limit

- In the limit $N \rightarrow \infty$ $P_{\text{obs}} = P_F(\mathbf{k}) + \bar{n}^{-1} \left[P_N + \bar{w}^2 P_{\text{los}}(k_{||}) \right]$
- where $P_{\rm los} \equiv \int \frac{d^2 {\bf k}_\perp}{(2\pi)^2} \ P_F({\bf k}_\perp,k_{||})$

$\overline{k_{\parallel}}$	z = 2.2	z = 2.6	z = 3.0	z = 3.6	z = 4.0
0.15	0.27(2)	0.43(2)	0.58(4)	1.05(10)	1.47(22)
0.20	0.26(1)	0.38(2)	0.58(3)	0.86(6)	1.08(13)
0.30	0.18(1)	0.30(1)	0.44(2)	0.81(5)	0.85(10)
0.50	0.15(1)	0.24(1)	0.35(1)	0.59(3)	0.81(07)

Covariance

- Can also calculate Cov[P,P]
 - Assume Gaussian (large scales).
 - Off-diagonal terms are small, even when shell averaged, if omit self-pairs.
 - Important to cap total information content.
 - Quasar clustering is a small correction.

$$\operatorname{cov}[\widehat{P}_{\mathrm{F}}(k), \widehat{P}_{\mathrm{F}}(k')]_{k_{\parallel}} = 2P_{\mathrm{tot}}^{2}\delta_{k}^{k'} + \frac{4}{N}\,\overline{\widetilde{w}^{2}}\,P_{\mathrm{F}}(k)P_{\mathrm{F}}(k') + \frac{1}{N}\,\overline{\widetilde{w}^{2}}^{2}\,\overline{n}^{-1}\,\int \frac{d^{2}k_{\perp}^{1}}{(2\pi)^{2}}\,P_{\mathrm{F}}(k_{\mathrm{ll}},k_{\perp}^{1})P_{\mathrm{F}}(k_{\mathrm{ll}},k_{\perp}^{1}-k_{\perp}-k_{\perp}') + \frac{1}{N}\,\overline{\widetilde{w}^{2}}^{2}\,\overline{n}^{-1}\,\int \frac{d^{2}k_{\perp}^{1}}{(2\pi)^{2}}\,P_{\mathrm{F}}(k_{\mathrm{ll}},k_{\perp}^{1})P_{\mathrm{F}}(k_{\mathrm{ll}},k_{\perp}^{1}+k_{\perp}-k_{\perp}')$$

Optimal weights

- Can choose weights, w, to minimize error.
- Find $w(k_{\parallel}) = B/[P_N + P_{los}]$
 - Remember P_{los} is almost constant at low k_{\parallel} .

$$\operatorname{Var}\left[P_{\text{obs}}\right] = 2P_{\text{tot}}^{2} \quad \text{with} \quad P_{\text{tot}} = P_{F} + \bar{n}_{\text{eff}}^{-1}P_{\text{los}}$$

$$\bar{n}_{\text{eff}} \equiv \frac{1}{\mathcal{A}} \sum_{n=1}^{N} \nu_{n} \quad , \quad \nu_{n} \equiv \frac{P_{\text{los}}}{P_{\text{los}} + P_{N,n}}$$

$$\text{One number!} \quad \text{Weight per quasar/sightline}$$

Analytic model

- Suppose N(f)=(N₀/f₀) (f/f₀)^{- α} - N(>f_{min})=N₀/(α -1) (f_{min}/f₀)^{1- α}
- Choose f_0 s.t. $P_N = P_{los}$ at f_0 , scaling as f^{-2}
- Define n_0 as N_0 /Area.
- For $\alpha = 2$: $n_{eff} = n_0 \tan^{-1}(f_0/f_{min})$
- For α =3: $n_{eff}=\frac{1}{2}n_0 \log(1+[f_0/f_{min}]^2)$
- Saturates at $f_{min} \sim f_0$.

Can constrain k^{-1} to 10%, k^{-2} to 3% and k^{0} to 0.03%

Comparison with FKP

- Have an "effective volume" for a quasar survey, just like FKP derived for galaxies.
 Feldman, Kaiser & Peacock (1994; ApJ 426, 23)
- Derivation is similar, but for $Ly\alpha$ shot-noise is in plane of sky and is modulated by line-of-sight power.

$$V_{\text{eff,gal}} = V_{\text{gal}} \left(\frac{P(k)}{P(k) + \bar{n}_{3D}^{-1}}\right)^2$$

$$V_{\rm eff,Ly\alpha} = \mathcal{A}L \left(\frac{P_F(k)}{P_F(k) + \bar{n}_{\rm eff}^{-1} P_{\rm los}}\right)^2$$

Quadratic estimator

- Can show that these minimum variance weights are the lowest order term in a series approximation to the optimal quadratic estimator.
 - Estimator weights all pairs.
 - $P \sim \delta^T C^{-1} X C^{-1} \delta$ + bias
 - Iteratively invert C.
- For reasonable quasar densities the lowest order term is almost as good as the full estimator.
- Next order term suppresses contribution from quasars overabundant within r_{perp}≤k_{perp}⁻¹

Configuration space

- Some advantages to working in configuration space and computing ξ_{F} by pair counts.
- In configuration space our weights, w(k), become convolutions along the line-of-sight.
- Since *w*(*k*) is so flat, convolution is "small".
- Weights can be well approximated by a single number, w_n , per sightline.
- Optimal weighting: w_n~(P_{los}+P_{N,n})⁻¹~(1+σ²_N/σ²_{los})⁻¹
 Variance smoothed on ~10Å
- The same weights work for cross-correlation with e.g. galaxy density field.

Advantages of 3D analysis

- There are several other advantages to 3D (c.f. 1D) analyses.
 - Continuum fluctuations less important.
 - Doesn't bias power in cross-spectra.
 - Increase in noise is small at low *k*.
 - Mean flux evolution only affects μ =1.
 - Marginalize low k_{perp} modes.
 - Power bleeding from W(k) not too important if reasonable guess for F(z) is known.
 - Damping power less important.
 - A lot of the los power from DLA systems is shot-noise.
 - Excluding self-pairs drastically reduces this power.
 - Power depends only on $k_{||}$

Summary

- The future of Ly α studies is 3D.
- We derived a simple formula for weighting sightlines in 2 -point analyses.

 $- w_{\rm n} \sim (1 + \sigma_{\rm N}^2 / \sigma_{\rm los}^2)^{-1}$

- A good approx. to OQE.
- Survey sensitivity characterized by n_{eff}.
- Optimal strategy: get S/N=2 per Å for an L_{*} quasar.
- Surveys can provide (very) strong constraints on cosmology and astrophysics.

BAO at high z

BAO feature survives in the LyA flux correlation function, because on large scales flux traces density. Relatively insensitive to astrophysical effects^{*}.