Baryon Oscillation Spectroscopic Survey (BOSS)

Beyond BAO ...

Martin White UCB/LBNL Santa Fe, 2012

BOSS in a nutshell

(Eisenstein et al. 2011)

- BOSS has:
 - ~8,000 deg² footprint in Spring
 - ~3,000 deg² footprint in Fall
- Upgraded spectrographs (with better throughput c.f. SDSS-I & II)
 - 1000x 2-arcsec fibers in cartridges
 - Increase wavelength range to 3600-10,000A (R=1500-2600)
- Finished ~3,000 deg² southern imaging in Fall 2008.
 - Released as part of DR8, published in ApJS (2011).
- Currently doing only spectroscopy
 - 1.3 million galaxies, i<19.9, z<0.8, over 10,000 deg²
 - 150,000 QSOs, g<22, 2.3<z<3, over 8,000 deg²

BOSS data release schedule

Date	Data release	What
Dec 2010	DR8	Imaging (Jan 2010)
July 2012	DR9	Spectra (July 2011)
July 2013	DR10	Spectra (July 2012)
Dec 2014	DR12	Spectra (Complete)

Outline Summary of results from DR9

- The galaxy survey
- Constraining dark energy/modified gravity.
 Redshift space distortions.
- Constraining quasar demographics.
- The Ly α forest survey.

Sky coverage for DR9

DR9

Approximately ~1/3 of the final data, though with a slightly worse geometry ...

Current status: DR10

2012-07-03

>800,000 galaxy and >170,000 quasar redshifts, over a million spectra in total!

BOSS DR9 CMASS papers

(264,283 CMASS galaxies over 3275 deg² at $z_{eff}=0.57$)

- Ross et al.: Systematics arXiv:1203.6499
 Anderson et al.: BAO arXiv:1203.6594
 Reid et al.: fits to anisotropic clustering arXiv:1203.6641
 Sanchez et al.: fits to monopole ξ(s) arXiv:1203.6616
 Tojeiro: RSD with passive galaxies arXiv:1203.6505
 Manera et al.: Mock catalogs arXiv:1203.6609
- Samushia et al.: Model constraints
 arXiv:1206.5309

~150 journal pages!

And more on the way ...

Growth of structure

- A key test of dark energy vs. modified gravity models is the growth of structure.
 - Also helps break some DE degeneracies ...
- For fixed expansion history/contents, GR makes a unique prediction for the growth of structure (and velocities).
 - Growth predicted to ~1% for a BOSS-like survey for Λ CDM.
- We can measure the growth of structure using redshift space distortions.
 - $z_{obs} = Hr + v_{pec}$.
 - $v_{\text{pec}} \sim a t \sim (\nabla \Psi) t \sim (\nabla \nabla^2 \rho) t$
 - Distortion correlated with density field.
- Constrain dD/dln(a)~ $f\sigma_8$.

Two dimensional clustering (Reid++12)

Anisotropy in the 2-point function due to peculiar velocities allows measurement of the growth of structure and tests of gravity on cosmological scales.

FoG a small correction for us

(Marginalize over a single nuisance parameter)

Smallest scale used for analysis

Legendre Polynomial moments: $\xi_{\ell}(s)$

Results: Fitting to 2d clustering

Use full model of $\xi_{0,2}$ (s $\geq 25 h^{-1}$ Mpc) to constrain:

- $D_V = [\chi^2 cz/H]^{1/3}$
- Growth of structure ($f\sigma_8$)
- Alcock-Paczynski $F(z) \equiv (1+z) D_A(z) H(z)/c$
 - Has a different shape-dependence than RSD, distinguishable if have enough dynamic range.
- Marginalize over shape of underlying linear P(k), bσ₈, σ²_{FOG}

Results including shape information with our model and the anisotropic clustering is fully consistent with the results using just BAO.

Alcock-Paczynski has different scaledependence, distinguishable from RSD

Measure isotropic and distortion parameters

Best fit model: $\chi^2 = 39$ (41 DOF) (Reid++12) 100 ξ₀ BAO + ξ₂: D_A, H, fσ₈ at z=0.57 80 $s^{2} \xi_{0}(s) (h^{-1} \text{ Mpc})^{2}$ 60 Growth & geometry "free"*: 40 fo₈=0.43±0.07 20 χ=2190±61Mpc 0 $-20 + s^{2} \xi_{0}(s)$ H=92.4±4.5km/s 50 100 WMAP7 ACDM:

f σ_8 =0.45±0.03 χ =2113±53Mpc H=94.2±1.4km/s

•Can be used to constrain models with arbitrary EoS and growth history providing physics at recombination is unaltered and growth remains scale-independent. •Approx. almost as good as fitting to ξ_0 and ξ_2 directly.

Cosmological implications: flat wCDM (Samushia++2012)

- Anisotropic clustering allows huge improvement on w*!
- $w = -0.95 \pm 0.25$ (WMAP + D_V(0.57)/r_s)
- w = -0.88 ± 0.055 (WMAP + anisotropic)
- NB: Λ CDM has $\Delta \chi^2 \sim 2.5$ even though w=-1 is $\sim 2\sigma$ off.

(* Thanks to fortuitous degeneracy direction between F_{AP} and $f\sigma_8$)

Quintessence

- Assume "standard" gravity and a scalar field with canonical kinetic term and a simple potential V(φ).
- No "interesting" models left, only those which can be tuned arbitrarily close to Λ CDM.
 - No explanation of "why now", or "sudden onset" problems.
 - No explanation of why Λ is the value it has.
 - Frequently no connection to particle-physics-inspired models.
- However does replace phenomenology with physics and is completely calculable!
 - Like f(R) models!!
- What are the current limits on such models?

Scalar field model: PNGB

* http://en.wikipedia.org/wiki/Pseudo-Goldstone_boson

Dark Energy or modified gravity?

(Not all analyses make the same assumptions or use the same priors so direct comparison is slightly tricky.)

Future constraints?

- Expect non-negligible increase in volume (and number of galaxies).
 - Roughly factor of 3.
- Get an additional boost by steadily improving survey footprint
 - Fewer "edges" and "gaps".
- Minor improvements from systematics and reduction improvements, efficiency of survey operations, etc.

Summary

 BOSS BAO has provided the most precise high-z distance in the DE-turn-on epoch to date!

 $- D_V(z=0.57)=2094\pm34 \text{ Mpc} (1.7\%).$

- RSD measurements significantly improve constraining power on models/parameters.
- ρ_{DE}/ρ_m is 4.5x smaller at z=0.57 than z~0.
 The "why now" problem!
- Λ CDM provides a good fit to the data (χ^2 /dof).
- Growth measures show a 2σ preference for w>-1 or MG.
 - Inclusion of other data brings you back closer to $\Lambda\text{CDM}.$

But wait, there's more ...

Quasar demographics

- BOSS is providing a large sample of less luminous QSOs at z~2.5, near peak of QSO dN/dz.
 - Better constraints on faint-end of LF.
 - Better clustering measurements.
 - Which halos? Duty cycle? Triggering?
- Also "double" the number of z>3.6 QSOs, reaching
 - ~1 magnitude fainter.
 - Early generations of BHs.
 - Tests of QSO formation.
 - Probes IGM evolution and end of reionization.
- Have multiple QSO selections along Stripe 82.

(BOSS currently has good redshifts for >60K quasars with z>2.2)

Comparison with SDSS

BOSS probes significantly further down the LF at z>2.2 than did SDSS-I & II. It is inefficient for 1<z<2.2 by design.

New LF results coming out very soon ...

Median QSO has $M_i(z=2)=-26$, $L_{bol}=2.5 \times 10^{39}$ W, $M_{BH}=2 \times 10^8 M_{sun}$

Clustering at z~2.5: Real space

Clustering of 27,129 quasars with 2.2<z<2.8 over 3,600 deg²

No detection of luminosity or redshift dependent clustering: as expected given our dynamic range.

Clustering at z~2.5: Redshift

Redshifts very difficult to measure in this range with the BOSS spectrograph (3,600-10,000Å).

End up using broad emission lines in the rest-frame UV (CIII], CIV).

QSOs at the peak of the QSO epoch

- These constraints are the by far the strongest in the redshift range z~2.5.
 - Surprisingly difficult to rule out/in models however.
- The diversity of QSO models isn't as large as it might at first seem.
 - Steeply falling mass function.
 - Mostly 2-halo information, and *n* not known.
- Beware "derived" statistics.
 - Methodological differences can inflate discrepancies.

These quasars also make great backlights ...

BAO and the IGM

- Distance constraints become tighter as one moves to higher z
 - More volume per sky area.
 - Less non-linearity.
- Expensive if use galaxies as tracers.
- Any tracer will do: Hi
 - 21cm from HI in galaxies: SKA or custom expt.
 - Ly α from IGM as probed by QSOs.
 - Absorption traces mass in a calculable way.
 - A dense grid of QSO sightlines could probe BAO
 - (White 2003, McDonald & Eisenstein 2007, Slosar++09, White++10, McQuinn & White 2011)
 - BOSS is providing 1st ever constraints from 3D Ly α forest mapping.

Spectrum '=' density

BAO at high z

BAO feature survives in the Ly α flux correlation function, because on large scales flux traces density. Relatively insensitive to astrophysical effects.

On large scales

- Differences with the galaxies
 - Not yet a proven technique (but will be *very* soon...)!
 - Signal is $e^{-\tau}$, so downweights high- δ (unlike galaxies which trace high- δ).
 - Need to be slightly careful about redshift space distortions (τ conserved, not *n*, except in line-dominated regime).
 - Noise comes in two forms:
 - Noise in an individual spectrum.
 - Projection/finite sampling: dominant for us and BigBOSS.
 - Balance is important for optimization!
 - See my Santa Fe talk from last year.
- Additional physics
 - Absorption could be affected by non-gravitational physics
 - Fluctuations in the UV background
 - Temperature fluctuations due to HeII reionization
 - Your favorite astrophysical phenomenon here.

Clustering in the Ly α Forest

- First detection of large-scale clustering of the IGM using crosscorrelations between QSO lines of sight.
- Matches ΛCDM prediction well.
- Lyα Forest Working Group has been very active.

$Ly\alpha$ forest cosmology

- New cosmology paper in few months.
 - Looks very promising for BAO detection.
- Lots of other projects in the early stages
 - "Old fashioned" 1D analysis (for m_v and inflation, ...)
 - Expect ~20x data in McDonald++
- Or in the "thinking about it" stage
 - Lots of cross-correlation projects.

- ...

Gravity working at z~0.5 and z~2.5

BOSS galaxies (years 1+2)

BOSS Lyα (year 1 only)

Lado Samushia + galaxy WG

Nicolas Busca + Ly α WG

Galaxy formation/evolution

- BOSS will allow us to trace galaxy evolution over half the age of the Universe.
 - Period when "stellar mass growth" decouples from "dark matter/ halo growth".
- Models traditionally have trouble reproducing properties of massive galaxies.
 - Too massive & too blue.
 - Much progress in theory related to progress on these issues.
- Many galaxy properties highly covariant, need large samples.
- Large volume/area allows BOSS to provide strong constraints on the massive end of the mass function.
 - Targeting was changed from old LRG selection to try to get both red and blue galaxies at high stellar mass at "high" z.
- Spectra allow us to measure many physical properties with higher fidelity.

Published papers

- Morphology of CMASS galaxies from HST/COSMOS Masters++
- BOSS spectroscopic strong lens survey Browstein++
- Stellar masses and SFHs from spectral fitting Chen++
- Direct observation of the LF of LRG satellites out to z~0.7 Tal++

And a very large number of papers in preparation this next year will be a "big one" for galaxy evolution modeling with BOSS.

Summary

- BOSS is working extremely well!
- From DR9 we have
 - 1.7% BAO distance constraint at z=0.57
 - (First?) Best measurement of H(z) using BAO + Alcock-Paczynski effect
 - 8% growth rate measurement
- Constraining power on dark energy substantially improved.
- New results on quasar demographics.
- Soon to publish new IGM results.
- New galaxy evolution results.
- Data for DR10 is essentially all "in the can" and we are ahead of schedule ...

