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RSD: Why	

•  What you observe in a redshift survey is the density field 

in redshift space! 
–  A combination of density and velocity fields. 

•  Tests GI. 
–  Structure growth driven by motion of matter and inhibited by 

expansion. 

•  Constrains GR. 
–  Knowing a(t) and ρi, GR provides prediction for growth rate. 
–  In combination with lensing measures Φ and Ψ. 

•  Measures “interesting” numbers. 
–  Constrains H(z), DE, mν, etc. 

•  Surveys can make percent level measurements – would 
like to have theory to compare to! 

•  Fun problem! 



Simplify …	

•  We will work in the distant observer, plane-

parallel approximation(s). 
•  All velocities will be expressed in units of the 

Hubble expansion. 
–  i.e. in distance units. 

•  Use polar coordinates.  
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Two dimensional clustering���
(BOSS; Reid++12)	


Line-of-sight picks out a preferred direction inducing anisotropy in the 2-point 
function – measures the growth of structure and tests GR. 
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In configuration space	

•  Kaiser’s pioneering work was done in Fourier space. 
•  There are valuable insights to be gained by working 

in configuration, rather than Fourier, space. 
•  We begin to see why this is a hard problem … 

•  Note all powers of the velocity field enter. 
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Gaussian limit���
(Fisher, 1995, ApJ 448, 494)	


•  If δ and v are Gaussian can do all of the expectation 
values. 

Expanding around y=Z: 
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Linear theory: configuration space���
(Fisher, 1995, ApJ 448, 494)	


•  One can show that this expansion agrees with the 
Kaiser formula. 

•  Two important points come out of this way of looking 
at the problem: 
–  Correlation between δ and v leads to v12. 

•  Overdensities will fall towards each other. 
•  The µ2 term is a <vδ> correlation as for Kaiser. 

–  LOS velocity dispersion is scale- and orientation-dependent. 
•  ξs depends on the 1st and 2nd derivatives of velocity 

statistics. 



Two forms of non-linearity	

•  Part of the difficulty is that we are dealing with two 

forms of non-linearity/non-perturbative behavior. 
–  The velocity field is non-linear. 
–  The mapping from real- to redshift-space is “non-linear”. 

•  These two forms of non-linearity interact, and can 
partially cancel. 

•  They also depend on parameters differently! 



Velocity field is nonlinear���
(well known result: suppression)	


Carlson et al. (2009)	
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Suppression 



Non-linear mapping?	


?	

Want a fully non-linear “toy model”, like spherical top-hat 
collapse, to gain some intuition …	




A model for the redshift-space 
clustering of halos	


•  We would like to develop a model capable of 
describing the redshift space clustering of halos. 
–  This will form the 1st step in a model for galaxies, but it also 

interesting in its own right. 

•  The model should try to treat the “non-linear 
mapping” part of the problem non-perturbatively. 

•  We will start with a toy model and then add realism/
dynamics … 



The correlation function of halos	


The correlation 
function of halo 
centers doesn’t 
have strong 
fingers of god, 
but still has 
“squashing” at 
large scales. 



Scale-dependent Gaussian 
streaming model	


Let’s go back to the exact result for a Gaussian field, a la 
Fisher: 
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Looks convolution-like, but with a scale-dependent v12 
and σ  (also, want to resum v12 into the exponential …) 



Scale-dependent Gaussian 
streaming model/ansatz	


1 + ξ(R,Z) =
�

dy [1 + ξ(r)]P (v = Z − y, r)
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Note: not a convolution 
because of (important!) r 
dependence or kernel.	


Non-perturbative mapping.	


If lowest moments of P set by 
linear theory, agrees at linear 
order with Kaiser.	

Approximate P as Gaussian …	




Gaussian ansatz	


30Mpc/h	


Gaussian	


Halos	


DM	




Testing the ansatz	


Reid & White (2011)	




The mapping	

Note, the behavior of 
the quadrupole is 
particularly affected 
by the non-linear 
mapping.  The effect 
of non-linear 
velocities is to 
suppress ξ2 (by 
~10%, significant!).  
The mapping causes 
the enhancement. 
This effect is tracer/
bias dependent! 



The “b3” term?	

•  One of the more interesting things to come out of this 

ansatz is the existence of a “b3” term. 
–  Numerically quite important when b~2. 
–  Another reason why mass results can be very misleading. 
–  But hard to understand (naively) from 

–  Where does it come from? 
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Lagrangian perturbation theory	


•  A different approach to PT. 
–  Buchert89, Moutarde++91, Bouchet++92, Catelan95, Hivon++95. 

•  Relates the current (Eulerian) position of a mass 
element, x, to its initial (Lagrangian) position, q, 
through a displacement vector field, Ψ. 

•  Has been radically extended recently by Matsubara: 
–  Matsubara (2008a; PRD, 77, 063530) 
–  Matsubara (2008b; PRD, 78, 083519) 

•  (and is very useful for BAO) 



Lagrangian perturbation theory	
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Beyond real-space mass	

•  One of the more impressive features of Matsubara’s LPT 

approach is that it can gracefully handle both biased tracers and 
redshift space distortions. 

•  In redshift space, in the plane-parallel limit,  

•  In PT   

•  For bias local in Lagrangian space: 

•  If we assume halos/galaxies form at peaks* of the initial density 
field (“peaks bias”) then explicit expressions exist for the 
integrals of F that we will need. 

Ψ(n) ∝ Dn ⇒ R(n)
ij = δij + nf �zi�zj

Ψ→ Ψ +
�z · Ψ̇
H

�z = RΨ

*…and assume the peak-background split. 

δobj(x) =
�

d3q F [δL(q)] δD(x− q−Ψ)



Configuration-space result	

•  The density of objects can be written: 

•  so the 2-point function is 

•  where we have written 

•  This is the configuration-space analog of Matsubara’s 
Fourier-space expression. 
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Example: Zel’dovich	

•  Let’s consider the lowest order expression 

–  Zel’dovich approximation. 

•  Since δ0 is Gaussian 

•  where we have defined 

•  and Δ=Ψ1-Ψ2.  The matrix Aij can be decomposed into 
pieces going as δij and qiqj 

Ψ(q) = Ψ(1)(q) =
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k2
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�
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�
δ2

�
ξ(q) = �δ1δ2�

Aij(q) = �∆i∆j� Ui(q) = �δ∆i�
Integrals of PL 
times Bessel 
functions. 



Matter & Zel’dovich approximation	


Aij = �∆Ψi∆Ψj� = B + C = 2σ2δij + C

1 + ξZA(r) =
�

d3q
(2π)3/2|A|1/2

e−(r−q)A−1(r−q)/2

=
�

d3q
(2π)3/2|B|1/2

e−(r−q)B−1(r−q)/2

�
1 + χ(q)

�

1 + χ(q) =
�

d3p

(2π)3/2|C|1/2
e−(q−p)C−1(q−p) Is very similar to 

the linear theory ξ. 



Biased tracers & Zel’dovich	

•  For biased tracers Taylor expand terms going as ξ 

and U but keep σ and A terms exponentiated. 
–  Both ξ and U vanish as q->∞ but σ and A do not. 
–  Note our result is not simply the FT of Matsubara’s 

expression b/c he keeps only constant piece of A 
exponentiated while we keep all of it. 

•  Have to plug this into 1+ξ formula, do λ integrals, … 

1 + ξX(r) =
�

d3q

(2π)3/2|A|1/2
e−

1
2 (q−r)T A−1(q−r)

×
�
1− · · · 2�F ���F ���ξRUigi + · · ·

�



Peaks bias	

•  Our final expression contains terms with averages of F’ and F’’ 

over the density distribution. 

•  These take the place of “bias” terms 
–  b1 and b2 in standard perturbation theory*. 

•  If we assume halos form at the peaks of the initial density field 
and use the peak-background split we can obtain: 

•  so <F’><F’’>~b3. 

b1 =
ν2 − 1

δc
, b2 =

ν4 − 3ν2

δ2
c

≈ b2
1

*but “renormalized”. 

for large ν	




Convolution LPT?	

•  Can go beyond 1LPT (Zel’dovich) and do perturbative 

expansion. 
•  Keep all of <ΔΨiΔΨj> (and σR) exponentiated. 

–  Expand the rest. 
–  Do some algebra. 
–  Evaluate convolution integral numerically. 
–  This is a partial resummation of Matsubara’s expression. 

•  Guarantees we recover the Zel’dovich limit as 0th order CLPT (for 
the matter). 
–  Eulerian and LPT require an ∞ number of terms. 
–  Many advantages: as emphasized recently/independently by 

Tassev & Zaldarriaga 



Matter: Real: Monopole	


Linear	

Matsubara	

CLPT	




Matter: Red: Monopole	


Linear	

Matsubara	

CLPT	




Matter: Quadrupole	


Linear	

Matsubara	

CLPT	




Matter: Hexadecapole	


Linear	

Matsubara	

CLPT	




Halos: Real: Monopole	


Linear	

Matsubara	

CLPT	




Halos: Red: Monopole	


Linear	

Matsubara	

CLPT	




Halos: Quadrupole	


Bias model too simple? 
Missing l=2 terms? 
(Tidal tensor) 



A combination of approaches?	

Z(r, J) =

�
d3q

�
d3k

(2π)3
eik·(q−r)

�
dλ1

2π

dλ2
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�
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�
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∂Jα

����
J=0
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∂2Z

∂Jα∂Jβ

����
J=0

≡ Z0,αβ(r)

… plus streaming model ansatz.	




From halos to galaxies	

•  In principle just another convolution 

–  Intra-halo PDF. 

•  In practice need to model cs, ss(1h) and ss(2h). 
•  A difficult problem in principle, since have fingers-of-

god mixing small and large scales. 
–  Our model for ξ falls apart at small scales… 

•  On quasilinear scales things simplify drastically. 
–  Classical FoG unimportant. 
–  Remaining effect can be absorbed into a single Gaussian 

dispersion which can be marginalized over. 



Conclusions	

•  Redshift space distortions arise in a number of contexts 

in cosmology. 
–  Fundamental questions about structure formation. 
–  Constraining cosmological parameters. 
–  Testing the paradigm. 

•  Linear theory doesn’t work very well. 
•  Two types of non-linearity. 

–  Non-linear dynamics and non-linear maps. 

•  Bias dependence can be complex. 
•  We are developing a new formalism for handling the 

redshift space correlation function of biased tracers. 
–  Stay tuned! 



The End	



