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“A man grows stale if he works all the time on insoluble 
problems, and a trip to the beautiful world of one dimension will 

refresh his imagination better than a dose of LSD.”
 -- Freeman Dyson
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The big picture I
•  Something like inflation laid down almost 

scale-invariant perturbations in the density of 
all species at early times. 
–  Scale invariant means constant metric fluctuations 

per lnk. 
–  Through Poisson eqn this is k4 power in density 

per lnk (or k1 in d3k). 
–  Lots of small-scale power – bottom up structure 

formation. 
•  These grew through the process of 

gravitational instability to form all of the 
structure we see today. 



The big picture II
•  14Gyr of evolution shapes the spectrum. 
•  Growth is a competition between gravity and 

expansion 
–  Depends on laws of gravity. 
–  Depends on constituents’ properties. 

•  Linear theory of small perturbations has been 
impressively validated by studies of CMB 
anisotropies. 
–  Excellent fits to 104 d.o.f. with 6 parameters. 

•  But most of the “modes” are in the quasi- to non-
linear regime. 



The big picture III
•  Since inhomogeneity arose from stochastic 

fluctuations, all inferences are statistical. 
•  Compute correlators of the temperature, 

density, velocity, etc. fields. 
•  Fluctuations are Gaussian on large scales, so 

the 2-point functions contain most of the 
information 
–  e.g. ρ(x)=<ρ>[1+δ(x)] 
–  <δ(k1)δ(k2)> = (2π)3 δ(k1+k2) P(k) 

•  We want models for P(k) that go beyond 
linear theory ... 





Motivation
•  There has been a great deal of work recently on 

(cosmological) perturbation theory. 
–  New approaches, new resummation schemes, new 

renormalization techniques borrowed from QFT. 
–  Growing appreciation of the uses and limitations of “standard 

perturbation theory” (SPT) and resummation schemes. 
–  Understanding of RSD, BAO, SSC, beat-coupling, …  

•  Want to understand these developments (and old 
ideas) better in a simple context: 

•  Collection of uniform, parallel, 2D sheets of matter. 
–  Problem becomes 1 dimensional (plus time). 

–  Significant (!) analytic simplification: can do SPT to ∞ order. 
–  Easier to handle numerically with high dynamic range. 
–  Many of the features of 3D have close 1D analogues. 



Review of cosmological PT

•  EOM are both non-linear and non-local. 
•  PT developed starting in the 60’s, reached its present form 

in the early 90’s. 
–  Peebles (1980), Juszkiewicz (1981), Goroff++(1986), Makino+

+(1992), Jain&Bertschinger(1994), Fry (1994). 

•  We will start with “Eulerian PT”. 
•  Consider only dark matter and assume we are in the 

single-stream limit. 
–  Describe by density: ρ=<ρ>(1+δ) and velocity, v. 
–  Velocity field irrotational: specified by divergence, θ. 



Equations of motion
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•  Very familiar looking fluid equations 
o  means we can borrow methods/ideas from other fields. 

•  Note the quadratic nature of the non-linearity. 
•  Proceed by perturbative expansion: δ=δ(1)+δ(2)+δ(3)+...

Equations of motion, assuming Ωm=1



Go into Fourier space
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Standard perturbation theory
•  Develop δ and θ as power series: 

•  then the δ(n) can be written 

•  with a similar expression for θ(n). 
•  The Fn are just ratios of dot products and obey simple 

recurrence relations. 
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Perturbation theory: diagrams
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Just as there is a 
diagrammatic short-hand for 
perturbation theory in 
quantum field theory, so there 
is in cosmology:  



Sort-of like QFT
•  Can collect δ and θ into an object, φ, with an 

index, write EoM like in QFT. 
•  Easy to write (Euclidean) path-integral form, 

generating functions, RG, … 

•  But this is somewhat closer to fluid mechanics 
and turbulence than QFT, so intuition can be 
unhelpful at times! 
–  As much BBGKY as large-N … 
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PT in practice
•  PT has given us lots of insights and ... 

–  It is proving particularly useful for large-scale, high-
precision work (e.g. BAO). 

–  It may be useful for pushing to smaller scales, and for 
higher order functions. 

•  Convergence rather slow. 
–  Resummation schemes (but beware symm. breaking). 
–  Unfortunately most schemes involves uncontrolled 

approximations, with no theory of the error. 
–  Solutions only valid prior to “sheet” crossing. 
–  P1-loop(k) depends on high-q, non-perturbative modes 

even at large scales. 

Can we gain any intuition on these issues from a toy model?



The setup�
(with Ωm=1 throughout)

Since the force on a particle due to a sheet is independent of 
the distance from the sheet, 1st order Lagrangian PT (Zeldovich) 
is exact until “sheet crossing” (can also show this analytically). 

P3D(kk,k?) = (2⇡)2�(D)(k?)P1D(kk)
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Equations of Motion

•  Eulerian 

 

•  Lagrangian 

In 1D can show SPT and LPT solutions are identical, to all 
orders, even though the systems are different! 
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Evolution



Beat coupling/SSC
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How does a high k mode respond to a long-wavelength 
over- or under-density?  In the limit that the long wavelength 
is the size of the survey (or larger) this is known as a “super 

sample” mode. 

c.f. [1+(34/21)δV] in 3D. 



Power spectra and correlation functions
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Can look at the response of 2pt fn to long wavelength mode 
(through the gradient times the large-scale variance), shifts 

and broadening of the BAO peak, ... 
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Broadening of the BAO peak

•  By far the dominant term (in 1D and in 3D) is 
the σ2 term, which broadens the BAO peak. 

•  Recall near the peak, ξ~10-3, σ~10Mpc, 
[ξ’’]-1/2~10Mpc. 

•  Thus the ξ2 and ξξ’ terms are small, but σ2ξ’’ 
is O(1). 
–  Because Lagrangian theories sum this important 

term to higher orders, they tend to do better near 
the BAO peak. 

–  The situation in P(k) space is more complicated. 



Shifting the BAO peak
•  The “dilation” term causes a shift of the BAO 

peak. 
–  ξ(x[1+α]) ~ ξ(x) + α xξ’(x) + … 

•  In overdense regions, the large-scale 
overdensity acts like a locally closed Universe  
remapping r to smaller scales. 

•  Since there is more growth in overdense 
regions than underdense ones, this leads to a 
net shift. 

•  A “separate Universe” approach can predict 
the coefficient of this term properly in 1D as 
well as in 3D. 



Lagrangian theory (ZA)

1 + �LPT(x) =

Z
dq �

D[x� q � (q)]

�LPT(k) =

Z
dq e�ikq

⇣
e�ik (q) � 1

⌘

PZA(k) =

Z
dq e�ik q

⇣
e�k2�2(q)/2 � 1

⌘

�2
(q) = h[ ZA(0)� ZA(q)]

2i =
Z 1

0

dk

⇡

2PL(k)

k2
(1� cos[k q])

But Ψ is just a Gaussian random variable … know <eΨ>



Can generate any order in PT!
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Now we can understand common resummation schemes in 
“standard” perturbation theory, and we can look at the rate of 

convergence of perturbation theory.
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Convergence of PT



Convergence of PT



Convergence of PT



Convergence of PT



Convergence of PT



Convergence of PT



For 1D CDM-like cosmology, standard perturbation theories do 
not describe evolution on any non-linear scale accurately. 



Effective field theory

•  “Effective” field theory has a long history in other 
areas of physics. 
–  But cosmology presents some unique features, so beware 

misleading analogies! 

•  Basic idea is to write equations only in terms of long-
wavelength fields, with no small-scale terms explicitly 
involved (they’ve been “integrated out”). 

•  The effects of these small-scale terms then show up 
as additional terms in effective equations of motion. 

Traditional perturbation theory treats all scales as if they 
were perturbative, and the matter field as a perfect fluid.

The goal of “EFT” is to overcome these deficiencies.
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What terms are allowed?
•  Working to lowest order, X must go as c1J+c2k2δl where J 

is uncorrelated with δl. 
–  By mass and momentum conservation, the leading order 

expansion of J must be k2. 

•  At 1-loop we simply integrate against G(a,a’), which gives 
the normal PT terms and just modifies ci for the “extra” 
terms. 
–  δ = δ(1) + δ(2) + δ(3) + c1’J + c2’k2δ(1) + …  

•  Thus the power spectrum must look like: 

•  Where α can be fit for and PJ goes as k4 for small k, 
otherwise unknown (usually dropped for all k). 
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Lagrangian EFTLSS
•  One can also develop a Lagrangian scheme: 

•  Hope we can generalize this more easily to include redshift 
space distortions, bias, reconstruction, etc. 
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Have choice of keeping terms exponentiated or consistently 
expanding by order … numerically not much difference. 

Expression for the correlation function is easy … 



Comparison



Going to 3D
•  Many of the same lessons carry across to 3D. 

–  Structure of the theory is mathematically identical, 
mostly it’s just coefficients in front of terms which 
change (modestly). 

–  Zeldovich is no longer exact, but it’s still pretty 
good! 

–  Effects of shell crossing are somewhat smaller 
(c.f. caustic formation in spherical collapse vs. “the 
real world”). 

•  It is possible to use these insights to develop 
a 3D Lagrangian EFT. 
–  e.g. Porto++(2014); Vlah++(2015a,b) 



Conclusions (so far)
•  Cosmological PT in 1D has some nice features. 

–  Easy to simulate, easy to calculate. 
–  Can do SPT to ∞ order. 
–  Algebra for common methods easier to understand. 
–  Close analogs to many 3D effects/situations. 

•  Can prove SPT converges … to the wrong answer. 
•  Can understand Fourier vs. Configuration and Euler vs. 

Lagrange more easily. 
•  EFTLSS is much simpler in 1D. 

–  Easier to see analytically what’s happening. 
–  Dramatic improvement for power-law models (where symmetry is 

really helping). 

•  Nice “toy” problem for understanding PT. 



Lie’ing with statistics
•  When comparing theory and observations 

you need to compute a likelihood function. 
•  If you’re lucky, the central limit theorem tells 

you the likelihood is Gaussian. 
•  So you need the theory, µ, data, d, and a 

covariance matrix, C.  
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Interpolation
•  Often computing C is hard/expensive. 
•  If compute it at a set of points, {p}, can I 

interpolate to other values? 

•  C is a symmetric, positive-definite matrix (SPD). 
•  These form a subset (actually a convex cone), P, 

of GL(n), which is a Lie group and thus a 
manifold. 
–  The tangent space at the identity is the Lie algebra, g. 
–  GL(n) acts transitively on P. 
–  There is a natural inner product (Frobenius). 
–  Have geodesics:  exp(tg)  for t in [0,1].  



Parallel transport

•  Recall the average, x, of a set {xi} minimizes 
distance:  Σi ||x-xi||2 

•  Since our tangent vectors (group generators) are 
related to group elements by exp, it’s no surprise 
that lengths are “logarithmic”. 

•  To interpolate from C0 at t=0 to C1 at t=1 we can 
do 
–  C(t) = C0[C0

-1C1]t = C0
1/2[C0

-1/2C1C0
-1/2]tC0

1/2 



Example in 1D: 40x40 matrices
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Computer graphics
•  In fact this is precisely the scheme used in 

computer graphics to interpolate camera 
movement!! 
–  Using quaternions in place of rotation matrices. 

•  Also used in MR imaging and medicine. 
•  The generalization to multiple dimensional 

interpolation is slightly subtle, since matrices 
don’t commute, but doable. 
–  There is some fun math and math history about 

this problem for matrices. 
•  Allows all sort of “distance based” algorithms 

to be applied to SPD matrices … 



The End


